ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Gravity, Geodesy and Tides  (30)
  • Oxford University Press  (30)
  • American Chemical Society
  • Springer Nature
  • 2015-2019  (30)
  • 1970-1974
  • 1945-1949
  • 2015  (30)
Collection
Publisher
  • Oxford University Press  (30)
  • American Chemical Society
  • Springer Nature
Years
  • 2015-2019  (30)
  • 1970-1974
  • 1945-1949
Year
  • 1
    Publication Date: 2015-09-24
    Description: Previous formalisms for determining the static perturbation of spherically symmetric self-gravitating elastic Earth models due to displacement dislocations deal with each infinitesimal element of the fault system in its epicentral reference frame. In this work, we overcome this restriction and present novel and compact formulas for obtaining the perturbation due to the whole fault system in an arbitrary and common reference frame. Furthermore, we show that, even in an arbitrary reference frame, it is still possible to discriminate the contributions associated with the polar, bipolar and quadrupolar patterns of the seismic source response, as well as their relation with the along strike, along dip and tensile components of the displacement dislocation. These results allow a better understanding of the relation between the static perturbation and the whole fault system, and find direct applications in geodetic problems, like the modelling of long-wavelength geoid or gravity data from GRACE and GOCE space missions and of the perturbation of the deviatoric inertia tensor of the Earth.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-26
    Description: Sensitive instruments like strainmeters and tiltmeters are necessary for measuring slowly varying low amplitude Earth deformations. Nonetheless, laser and fibre interferometers are particularly suitable for interrogating such instruments due to their extreme precision and accuracy. In this paper, a practical design of a simple pendulum borehole tiltmeter based on laser fibre interferometric displacement sensors is presented. A prototype instrument has been constructed using welded borosilicate with a pendulum length of 0.85 m resulting in a main resonance frequency of 0.6 Hz. By implementing three coplanar extrinsic fibre Fabry-Perot interferometric probes and appropriate signal filtering, our instrument provides tilt measurements that are insensitive to parasitic deformations caused by temperature and pressure variations. This prototype has been installed in an underground facility (Rustrel, France) where results show accurate measurements of Earth strains derived from Earth and ocean tides, local hydrologic effects, as well as local and remote earthquakes. The large dynamic range and the high sensitivity of this tiltmeter render it an invaluable tool for numerous geophysical applications such as transient fault motion, volcanic strain and reservoir monitoring.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-03
    Description: Data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission can be used to estimate the mass change rate for separate drainage systems (DSs) of the Greenland Ice Sheet (GrIS). One approach to do so is by inversion of the level-2 spherical harmonic data to surface mass changes in predefined regions, or mascons. However, the inversion can be numerically unstable for some individual DSs. This occurs mainly for DSs with a small mass change signal that are located in the interior region of Greenland. In this study, we present a modified mascon inversion approach with an improved implementation of the constraint equations to obtain better estimates for individual DSs. We use separate constraints for mass change variability in the coastal zone, where run-off takes place, and for the ice sheet interior above 2000 m, where mass changes are smaller. A multi-objective optimization approach is used to find optimal prior variances for these two areas based on a simulation model. Correlations between adjacent DSs are suppressed when our optimized prior variances are used, while the mass balance estimates for the combination of the DSs that make up the GrIS above 2000 m are not affected significantly. The resulting mass balance estimates for some DSs in the interior are significantly improved compared to an inversion with a single constraint, as determined by a comparison with mass balance estimates from surface mass balance modelling and discharge measurements. The rate of mass change of the GrIS for the period of January 2003 to December 2012 is found to be –266.1 ± 17.2 Gt yr –1 in the coastal zone and areas below 2000 m, and +8.2 ± 8.6 Gt yr –1 in the interior region.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-06
    Description: The static and transient deformations produced by earthquakes cause density perturbations which, in turn, generate immediate, long-range perturbations of the Earth's gravity field. Here, an analytical solution is derived for gravity perturbations produced by a point double-couple source in homogeneous, infinite, non-self-gravitating elastic media. The solution features transient gravity perturbations that occur at any distance from the source between the rupture onset time and the arrival time of seismic P waves, which are of potential interest for real-time earthquake source studies and early warning. An analytical solution for such prompt gravity perturbations is presented in compact form. We show that it approximates adequately the prompt gravity perturbations generated by strike-slip and dip-slip finite fault ruptures in a half-space obtained by numerical simulations based on the spectral element method. Based on the analytical solution, we estimate that the observability of prompt gravity perturbations within 10 s after rupture onset by current instruments is severely challenged by the background microseism noise but may be achieved by high-precision gravity strainmeters currently under development. Our analytical results facilitate parametric studies of the expected prompt gravity signals that could be recorded by gravity strainmeters.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-13
    Description: The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d –1 , each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively high groundwater storage. The accommodation for spatially varying gravity change would be most important for long-duration campaigns, campaigns with very rapid changes in gravity and (or) campaigns where especially precise observed relative-gravity differences are used in the network adjustment.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-20
    Description: In the present work we illustrate a new local inversion algorithm to retrieve the Moho depth from GOCE (Gravity field and steady-state Ocean Circulation Explorer) gravity field. In details the proposed procedure can be divided into two main steps: the first one consists in recognizing and isolating the different geological provinces in the study area by exploiting information coming from the GOCE global gravity field model. Once the main geological provinces are defined, a function relating the crust density of each province with depth is built and used to reduce the data. The gravitational effects of sediments, topography, bathymetry and upper mantle are also removed. In the second step the residual gravitational field is inverted to retrieve the Moho depth and some information on the crustal density. In particular, the clustering of geological province is performed by means of an automatic Bayesian classification algorithm while the inversion of GOCE residual field is performed by adapting the global algorithm developed in the framework of the GEMMA project to the local scale. The procedure, based on an iterative Wiener filter, allows to compute the Moho depth considering lateral as well as radial variations of crustal density. The algorithm has been applied to the fifth release of GOCE time-wise global gravity field model to infer information on the crustal structure in the Western Balkan area, that is, the region laying between Bulgaria and the Adriatic Sea. This region is one of the most complex and active, from the tectonic point of view, in the whole Europe and it is characterized by the presence of the Alpine-Himalayan orogenic belt, formed by the collision between the African and Eurasian plates, and by the opening of the Pannonian Basin. Results show a good agreement between the obtained geological provinces with the actual knowledge on the region. The resulting Moho depth ranges between about 20 km beneath the Adriatic Sea and 45 km in the Dinarides. Comparisons with available seismic data show differences smaller than 1 km (standard deviation).
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-29
    Description: Gravity variations associated with Earth's oblateness ( J 2 ) have been observed by satellite laser ranging (SLR) since 1976. The J 2 time-series has been used to measure and help understand many geophysical processes within the Earth system ranging from the mantle to the atmosphere. While post glacial rebound and the Earth climate system are believed to be the primary driving forces of long-term and seasonal J 2 variations, the physical cause of decadal and longer timescale J 2 variations has remained uncertain, although recent evidence indicates that polar ice mass changes are important. In this study, we estimate a variety of climate contributions to J 2 over the period 1979–2010, and find that ice mass variations in Greenland and Antarctica are the dominant cause of observed decadal and longer J 2 variations. Residual variations at periods near 10–11 years may reflect limitations of numerical climate models in estimating mass change variability at long periods, but are also suggestive of potential contribution related to variable solar activity.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-30
    Description: Interferometric synthetic aperture radar (InSAR) technology provides a valuable tool for obtaining Earth surface deformation and topography at high spatial resolution for crustal deformation studies. Similar to global positioning system (GPS), InSAR measurements are affected by the Earth's ionospheric and tropospheric layers as the electromagnetic signals significantly refract while propagating through the different layers. While GPS signals propagating through the neutral atmosphere are affected primarily by the distribution, pressure and temperature of atmospheric gases, including water vapour, the propagation through the ionosphere is mainly affected by the number of free electrons along the signal path. Here, we present the use of dense regional GPS networks for extracting tropospheric zenith delays and ionospheric total electron content (TEC) maps in order to reduce the noise levels in InSAR images. The results show significant reduction in the root mean square (RMS) values when simultaneously combining the two corrections, both at short time periods where no surface deformation is expected, and at longer periods, where imaging of localized subsidence and fault creep is enhanced.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-30
    Description: The main objective of the Gravity Recovery and Climate Experiment (GRACE) Atmospheric and Oceanic De-Aliasing Level-1B product (AOD1B) is the removal of high-frequency non-tidal mass variations due to sub-monthly mass transport in the atmosphere and oceans. Application of AOD1B shall avoid aliasing of these high-frequency signals into monthly gravity models derived from modern gravity missions and shall help to derive consistent orbit solutions for altimetry and Satellite Laser Ranging missions. The AOD1B 6-h series of spherical harmonic coefficients up to degree and order 100 are routinely generated at the German Research Centre for Geoscience and distributed to the GRACE Science Data System and the user community. Inputs for this product are acquired from numerical weather prediction models which are regularly revised and consequently not stable in time. The latest AOD1B release 5 (RL05) is based, as all other releases, on input from ECMWF and does not resolve this problem of discontinuities present in the surface pressure and surface geopotential input data. This might contaminate the gravity field variations derived from atmospheric mass variations. In this paper we present a method to overcome this problem during future AOD1B product generation, as well as two new Level-2 products (GAE and GAF) that, over land, fix a posteriori the two jumps present in the already distributed Level-2 RL05 monthly gravity models which were based on AOD1B RL05. The impact of the proposed correction on the variations and long-term trend of the total mass of the atmosphere and on the ice mass balance over Antarctica and over Greenland is also illustrated. We found that the GAE/GAF-corrected trend of the global atmospheric mass over the GRACE mission lifetime significantly decreased from –0.05 to –0.02 mm yr –1 in terms of geoid height. A considerable effect (33 per cent) was also found in the quadratic term of ice mass loss over Antarctica which results in an acceleration of 3.2 Gt yr –1  yr –1 smaller than without applying this correction.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-17
    Description: Previous studies of Earth rotation perturbations due to ice-age loading have predicted a slow secular drift of the rotation axis relative to the surface geography (i.e. true polar wander, TPW) of order of several degrees over the Plio-Pleistocene. It has been argued that this drift and the change in the geographic distribution of solar insolation that it implies may have been responsible for important transitions in ice-age climate, including the termination of ice-age cycles.We use a revised rotational stability theory that incorporates a more accurate treatment of the Earth's background ellipticity to reconsider this issue, and demonstrate that the net displacement of the pole predicted in earlier studies disappears. This more muted polar motion is due to two factors: first, the revised theory no longer predicts the permanent shift in the rotation axis, or the so-called ‘unidirectional TPW’, that appears in the traditional stability theory; and, second, the increased background ellipticity incorporated in the revised predictions acts to reduce the normal mode amplitudes governing the motion of the pole. We conclude that ice-age-induced TPW was not responsible for the termination of the ice age. This does not preclude the possibility that TPW induced by mantle convective flow may have played a role in major Plio-Pleistocene climate transitions, including the onset of Northern Hemisphere glaciation.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-10-25
    Description: A new approach based on energy conservation principle for satellite gravimetry mission has been developed and yields more accurate estimation of in situ geopotential difference observables using K-band ranging (KBR) measurements from the Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission. This new approach preserves more gravity information sensed by KBR range-rate measurements and reduces orbit error as compared to previous energy balance methods. Results from analysis of 11 yr of GRACE data indicated that the resulting geopotential difference estimates agree well with predicted values from official Level 2 solutions: with much higher correlation at 0.9, as compared to 0.5–0.8 reported by previous published energy balance studies. We demonstrate that our approach produced a comparable time-variable gravity solution with the Level 2 solutions. The regional GRACE temporal gravity solutions over Greenland reveals that a substantially higher temporal resolution is achievable at 10-d sampling as compared to the official monthly solutions, but without the compromise of spatial resolution, nor the need to use regularization or post-processing.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-04-24
    Description: We interpreted the TRIDENT satellite derived gravity field to provide detailed insights into the spatial distribution of the crustal density structures in the area of the Yellow Sea. We used 3-D forward density modelling for the interpretation that incorporated constraints from existing geological and geophysical information. A gravity stripping method is used to separate out the gravity effects of different geological crustal structures. From this analysis we see that (1) the Gunsan sedimentary basin is isostatically compensated. (2) The satellite-derived Bouguer anomalies ranging from 15 to –30 x 10 –5 m s –2 are linked to basin thicknesses in the Yellow Sea. (3) The calculated Moho depth in the Yellow Sea varies from 27 km beneath the deep sedimentary basin to 34 km in the uplifted zones. (4) Moho depth calculations show two distinct areas, characterized by the deepest Moho depths and the largest crustal thicknesses in the Yellow Sea. The one region extends along the Qianliyan Uplift Zone from Jiaodong to Hongsung while the other area extends from southeastern China to Hongsung in the Korean peninsula. Compared to previous works we suggest that they are the part of the collisions zone between North and South China Blocks extending from China to the Korean peninsula via the Yellow Sea.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-06-19
    Description: Regional refinement of the gravity field models from satellite data using spherical radial base functions (SRBF) is an ill-posed problem. This is mainly due to the regional confinement of the data and the base functions, which leads to severe instabilities in the solutions. Here, this ill-posedness as well as the related regularization process are investigated. We compare three methods for the choice of the regularization parameter, which have been frequently used in gravity modelling. These methods are (1) the variance component estimation (VCE), (2) the generalized cross validation (GCV) and (3) the L-curve criterion. A particular emphasis is put on the impact of the SRBF type on the regularization parameter. To do this, we include two types of SRBF which are often used for regional gravity field modelling. These are the Shannon SRBF or the reproducing kernel and the Spline SRBF. The investigations are performed on two months of the real GOCE ultrasensitive gravity gradients over Central Africa and Amazon. The solutions are validated against a state-of-the-art global gravity solution. We conclude that if a proper regularization method is applied, both SRBF deliver more or less the same accuracy. We show that when the Shannon wavelet is used, the L-curve method gives the best results, while with the Spline kernel, the GCV outperforms the other two methods. Moreover, we observe that the estimated coefficients for the Spline kernel cannot be spatially interpreted. In contrast, the coefficients obtained for the Shannon wavelet reflect the energy of the recovered gravity field with a correlation factor of above 95 per cent. Therefore, when combined with the L-curve method, the Shannon SRBF is advantageous for regional gravity field estimation, since it is one of the simplest band-limited SRBF. In addition, it delivers promising solutions and the estimated coefficients represent the characteristics of the gravity field within the target region.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-06-28
    Description: This paper describes an alternative acceleration approach for determining GRACE monthly gravity field models. The main differences compared to the traditional acceleration approach can be summarized as: (1) The position errors of GRACE orbits in the functional model are taken into account; (2) The range ambiguity is eliminated via the difference of the range measurements and (3) The mean acceleration equation is formed based on Cowell integration. Using this developed approach, a new time-series of GRACE monthly solution spanning the period January 2003 to December 2010, called Tongji_Acc RL01, has been derived. The annual signals from the Tongji_Acc RL01 time-series agree well with those from the GLDAS model. The performance of Tongji_Acc RL01 shows that this new model is comparable with the RL05 models released by CSR and JPL as well as with the RL05a model released by GFZ.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-02-19
    Description: In this paper, we present a method for incorporating prior geological information into potential field data inversion problem. As opposed to the traditional inverse algorithm, our proposed method takes full advantage of prior geological information as a constraint and thus obtains a new objective function for inversion by adding Lagrangian multipliers and slack variables to the traditional inversion method. These additional parameters can be easily solved during iterations. We used both synthetic and observed data sets to test the stability and validity of the proposed method. Our results using synthetic gravity data show that our new method predicts depth and density anomalies more efficiently and accurately than the traditional inversion method that does not include prior geological constraints. Then using observed gravity data in the Three Gorges area and geological constraint information, we obtained the density distribution of the upper and middle crust in this area thus revealing its geological structure. These results confirm the proposed method's validity and indicate its potential application for magnetism data inversion and exploration of geological structures.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-07-10
    Description: It remains enigmatic how slow slip events (SSEs) interact with other slow seismic events and large distant earthquakes at many subduction zones. Here we model the spatiotemporal slip evolution of the most recent long-term SSE in 2009–2011 in the Bungo Channel region, southwest Japan using GEONET GPS position time-series and a Kalman filter-based, time-dependent slip inversion method. We examine the space-time relationship between the geodetically determined slow slip transient and seismically observed low frequency earthquakes (LFEs) and very-low frequency earthquakes (V-LFEs) near the Nankai trough. We find a strong but distinct temporal correlation between transient slip and LFEs and V-LFEs, suggesting a different relationship to the SSE. We also find the great Tohoku-Oki earthquake appears to disrupt the normal source process of the SSE, probably reflecting large-scale stress redistribution caused by the earthquake. Comparison of the 2009–2011 SSE with others in the same region shows much similarity in slip and moment release, confirming its recurrent nature. Comparison of transient slip with plate coupling shows that slip transients mainly concentrate on the transition zone from strong coupling region to downdip LFEs with transient slip relieving elastic strain accumulation at transitional depth. The less consistent spatial correlation between the long-term SSE and seismic slow earthquakes, and susceptibility of these slow earthquakes to various triggering sources including long-term slow slip, suggests caution in using the seismically determined slow earthquakes as a proxy for slow slip.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-07-04
    Description: Normal mode treatments of the Earth's body tide response were developed in the 1980s to account for the effects of Earth rotation, ellipticity, anelasticity and resonant excitation within the diurnal band. Recent space-geodetic measurements of the Earth's crustal displacement in response to luni-solar tidal forcings have revealed geographical variations that are indicative of aspherical deep mantle structure, thus providing a novel data set for constraining deep mantle elastic and density structure. In light of this, we make use of advances in seismic free oscillation literature to develop a new, generalized normal mode theory for the tidal response within the semi-diurnal and long-period tidal band. Our theory involves a perturbation method that permits an efficient calculation of the impact of aspherical structure on the tidal response. In addition, we introduce a normal mode treatment of anelasticity that is distinct from both earlier work in body tides and the approach adopted in free oscillation seismology. We present several simple numerical applications of the new theory. First, we compute the tidal response of a spherically symmetric, non-rotating, elastic and isotropic Earth model and demonstrate that our predictions match those based on standard Love number theory. Second, we compute perturbations to this response associated with mantle anelasticity and demonstrate that the usual set of seismic modes adopted for this purpose must be augmented by a family of relaxation modes to accurately capture the full effect of anelasticity on the body tide response. Finally, we explore aspherical effects including rotation and we benchmark results from several illustrative case studies of aspherical Earth structure against independent finite-volume numerical calculations of the semi-diurnal body tide response. These tests confirm the accuracy of the normal mode methodology to at least the level of numerical error in the finite-volume predictions. They also demonstrate that full coupling of normal modes, rather than group coupling, is necessary for accurate predictions of the body tide response.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-11-27
    Description: Crustal vertical deformation (CVD) observed by continuous GPS height time-series can be explained largely by surface loading effects recovered from both Gravity Recover and Climate Experiment (GRACE) and General Circulation Models (GCMs) data. We first show that lower degree CVD spatial spectrum due to the Earth's elastic response to a uniform surface loading plays more important roles than that of high-degree case. We then demonstrate that GRACE data with 300–400 km spatial resolution have the ability to detect 99 per cent power of global and regional CVD in spatial spectrum domain using a global frequency–wavenumber spectrum method. We can just use either GRACE or GCMs 36 degree/order (d/o) spherical harmonic coefficients (SHCs) which correspond to 500 km spatial resolution to acquire more than 90 per cent variance of total CVD modeled by up to 180 d/o SHCs at 98 per cent global gridpoints. Globally, CVD modeled by GRACE loading can explain 72 per cent annual amplitude and 69 per cent variance of GPS observed height time-series, which is better than the GCMs results of 64 per cent for annual amplitude and 41 per cent for variance. Using a three cornered hat method, we also show that the noise level of monthly averaged CVD is about 3 mm for both GPS height time-series and GRACE loading result, while that of GCMs result is only 1.3 mm.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-11-25
    Description: We present a new method to derive 3-D surface deformation from an integration of interferometric synthetic aperture radar (InSAR) images and Global Navigation Satellite System (GNSS) observations based on Akaike's Bayesian Information Criterion (ABIC), considering relationship between deformations of neighbouring locations. This method avoids interpolated errors by excluding the interpolation of GNSS into the same spatial resolution as InSAR images and harnesses the data sets and the prior smooth constraints of surface deformation objectively and simultaneously by using ABIC, which were inherently unresolved in previous studies. In particular, we define surface roughness measuring smoothing degree to evaluate the performance of the prior constraints and deduce the formula of the covariance for the estimation errors to estimate the uncertainty of modelled solution. We validate this method using synthetic tests and the 2008 M w 7.9 Wenchuan earthquake. We find that the optimal weights associated with ABIC minimum are generally at trade-off locations that balance contributions from InSAR, GNSS data sets and the prior constraints. We use this method to evaluate the influence of the interpolated errors from the Ordinary Kriging algorithm on the derivation of surface deformation. Tests show that the interpolated errors may contribute to biasing very large weights imposed on Kriged GNSS data, suggesting that fixing the relative weights is required in this case. We also make a comparison with SISTEM method, indicating that our method allows obtaining better estimations even with sparse GNSS observations. In addition, this method can be generalized to provide a solution for situations where some types of data sets are lacking and can be exploited further to account for data sets such as the integration of displacements along radar lines and offsets along satellite tracks.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-11-27
    Description: While it has been known for some time that offsets in the time-series of Global Navigation Satellite System (GNSS) position estimates degrade station velocity determinations, the magnitude of the effect has not been clear. Using products of the International GNSS Service (IGS), we assess the impact empirically by injecting progressively larger numbers of artificial offsets and solving for a series of long-term secular GNSS frames. Our results show that the stability of the IGS global frame datum is fairly robust, with significant effects at the formal error level only for the R x (and Y-pole) and R z rotational orientations. On the other hand, station velocity estimates are more seriously affected, especially the vertical component. For the typical IGS station, the mean vertical rate uncertainty is already limited to 0.34 mm yr –1 for the current set of position discontinuities. If the number of breaks doubles, which might occur using newer detection schemes, then that uncertainty will worsen by ~40 per cent to 0.48 mm yr –1 . This error source is generally a more important component of realistic velocity uncertainties than any other, including accounting for temporal correlations in the GNSS data. The only way to improve future GNSS velocity estimates is to severely limit manmade displacements at the tracking stations.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-04-01
    Description: In general, observations are normally considered to refer to an epoch in time, however, observations take time. During this time span temporal variations of the observable alias the measurement. Similar phenomenon can be defined in the space domain as well: data treated to refer to a geographical location often contains integrated information of the surroundings. In each case the appropriate signal content can partially be recovered by desmoothing the averaged data. The present study delivers the theoretical foundation of a desmoothing method, and suggests its use on different applications in geodesy. The theoretical formulation of the desmoothing has been derived for 1-D and 2-D signals, the latter is interpreted on a plain and also on a sphere. The presented case studies are less elaborated, but intended to demonstrate the need and usefulness of the desmoothing tool.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-01-08
    Description: Extracting geophysical signals from Global Positioning System (GPS) coordinate time-series is a well-established practice that has led to great insights into how the Earth deforms. Often small discontinuities are found in such time-series and are traceable to either broad-scale deformation (i.e. earthquakes) or discontinuities due to equipment changes and/or failures. Estimating these offsets accurately enables the identification of coseismic deformation estimates in the former case, and the removal of unwanted signals in the latter case which then allows tectonic rates to be estimated more accurately. We develop a method to estimate accurately discontinuities in time series of GPS positions at specified epochs, based on a so-called ‘offset series’. The offset series are obtained by varying the amount of GPS data before and after an event while estimating the offset. Two methods, a mean and a weighted mean method, are then investigated to produce the estimated discontinuity from the offset series. The mean method estimates coseismic offsets without making assumptions about geophysical processes that may be present in the data (i.e. tectonic rate, seasonal variations), whereas the weighted mean method includes estimating coseismic offsets with a model of these processes. We investigate which approach is the most appropriate given certain lengths of available data and noise within the time-series themselves. For the Sumatra–Andaman event, with 4.5 yr of pre-event data, we show that between 2 and 3 yr of post-event data are required to produce accurate offset estimates with the weighted mean method. With less data, the mean method should be used, but the uncertainties of the estimated discontinuity are larger.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-11-07
    Description: We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in each layer varies as 1/ r (where r is the radial coordinate) while the gravity is constant and that in the core the gravity in each layer varies linearly in r with constant density. These approximations dramatically simplify the subsequent mathematical analysis and render closed-form expressions for the expansion coefficients. We implement our solution in a MATLAB code and perform a benchmark which shows both the correctness of our solution and the implementation. We also calculate the load Love numbers (LLNs) of the PREM Earth for different degrees of the Legendre function for both isotropic and transversely isotropic, layered mantles with different core models, demonstrating for the first time the effect of Earth anisotropy on the LLNs.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-08-02
    Description: Moment accumulation rate (also referred to as moment deficit rate) is a fundamental quantity for evaluating seismic hazard. The conventional approach for evaluating moment accumulation rate of creeping faults is to invert for the slip distribution from geodetic measurements, although even with perfect data these slip-rate inversions are non-unique. In this study, we show that the slip-rate versus depth inversion is not needed because moment accumulation rate can be estimated directly from surface geodetic data. We propose an integral approach that uses dense geodetic observations from Interferometric Synthetic Aperture Radar (InSAR) and the Global Positioning System (GPS) to constrain the moment accumulation rate. The moment accumulation rate is related to the integral of the product of the along-strike velocity and the distance from the fault. We demonstrate our methods by studying the Creeping Section of the San Andreas fault observed by GPS and radar interferometry onboard the ERS and ALOS satellites. Along-strike variation of the moment accumulation rate is derived in order to investigate the degree of partial locking of the Creeping Section. The central Creeping Segment has a moment accumulation rate of 0.25–3.1  x  10 15 Nm yr –1 km –1 . The upper and lower bounds of the moment accumulation rates are derived based on the statistics of the noise. Our best-fitting model indicates that the central portion of the Creeping Section is accumulating seismic moment at rates that are about 5 per cent to 23 per cent of the fully locked Carrizo segment that will eventually be released seismically. A cumulative moment budget calculation with the historical earthquake catalogue ( M  〉 5.5) since 1857 shows that the net moment deficit at present is equivalent to a M w 6.3 earthquake.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-11-07
    Description: The increasing availability of geophysical models of the Earth's lithosphere and mantle has generated renewed interest in computation of theoretical gravity effects at global and regional scales. At the same time, the increasing availability of gravity gradient anomalies derived from satellite measurements, such as those provided by GOCE satellite, requires mathematical methods that directly model the gravity gradient anomalies in the same reference frame as GOCE gravity gradients. Our main purpose is to interpret these anomalies in terms of source and density distribution. Numerical integration methods for calculating gravity gradient values are generally based on a mass discretization obtained by decomposing the Earth's layers into a finite number of elementary solid bodies. In order to take into account the curvature of the Earth, spherical prisms or ‘tesseroids’ have been established unequivocally as accurate computation tools for determining the gravitational effects of large-scale structures. The question which then arises from, is whether gravity calculation methods using spherical prisms remain valid when factoring in the ellipticity of the Earth. In the paper, we outline a comprehensive method to numerically compute the complete gravity field with the help of the Gauss–Legendre quadrature involving ellipsoidal shaped prisms. The assessment of this new method is conducted by comparison between the gravity gradient values of simple sources obtained by means of numerical and analytical calculations, respectively. A comparison of the gravity gradients obtained from PREM and LITHO1.0 models using spherical- and ellipsoidal-prism-based methods is also presented. Numerical results indicate that the error on gravity gradients, caused by the use of the spherical prism instead of its ellipsoidal counterpart to describe an ellipsoidally shaped Earth, is useful for a joint analysis with those deduced from GOCE satellite measurements. Provided that a suitable scaling of prism densities has been performed, the spherical approximation error at GOCE height hardly reaches 1 mE for the entire Earth's lithosphere. The error attains 6 mE at a peak for a complete modeling of the Earth, from the crust down to the internal core.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-08-22
    Description: This paper presents efficient numerical schemes for 3-D gravity field inversion. We propose a 2-D multilayer model to approximate a 3-D density distribution, and prove that the solution of the multilayer model will converge to the discretized 3-D solution. Differed from the conventional fast Fourier transform (FFT) based methods in which FFT is applied to the kernel, the proposed approach directly generates the Block-Toeplitz Toeplitz-Block (BTTB) structure by discretizing the multilayer model and the BTTB matrix is embedded into a Block-Circulant Circulant-Block (BCCB) matrix such that FFT can be utilized. In this approach, both regularization and optimal pre-conditioning operator can be constructed in the form of BTTB matrix. Consequently, very efficient solvers can be developed, and tremendous reduction in storage requirement and computing time can be achieved. To validate the new approach, numerical simulations using synthetic and real field data are reported, and numerical analysis is carried out for the inversion problems. Based on this study, we conclude that the proposed methods are capable of performing large-scale 3-D density inversions with a modest computing resource.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-08-22
    Description: In this study, we propose a method to determine dislocation Love numbers using co-seismic gravity changes from GRACE measurements. First, we present an observation equation to model GRACE observations taking into account the effect of ocean water mass redistribution. The L-curve method was used to determine the regulation parameter in the inversion of the geopotential dislocation Love numbers constrained by an a priori preliminary reference Earth (PREM) model. Then, the GRACE data error was estimated in the study area to evaluate the uncertainty of our inversion, and our inverted Love numbers are significantly deviated from the PREM ones even the uncertainty is considered. Finally, GRACE data observed for the 2011 Tohoku-Oki earthquake ( M w  = 9.0) were used to estimate the gravity dislocation Love numbers, considering three different fault-slip models. The results show that the inverted dislocation Love numbers deviate from PREM model, especially for $k_{l1}^{32}$ and $k_{l0}^{33} - k_{l0}^{22}$ , which indicates that the inverted dislocation Love numbers can reflect the local structure that is different from the global average. This inconsistency is possibly because that the cold denser oceanic slab dives from the Japanese Trench into the softer asthenosphere, and then changes the local density here higher than the global average. And with these sets of Love numbers, we can invert for more accurate fault model and analyse focal rupture mechanism when some other earthquake in this area occurs in the future. This study provides a new approach to invert for dislocation Love numbers linked with local geological information.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-09-06
    Description: The intra-plate deformation of the Upper Rhine Graben (URG) located in Central Europe is investigated using geodetic measurement techniques. We present a new approach to calculate a combined velocity field from InSAR, levelling and GNSS measurements. As the expected tectonic movements in the URG area are small (less than 1 mm a –1 ), the best possible solutions for linear velocity rates from single-technique analyses are estimated in a first step. Second, we combine the velocity rates obtained from InSAR (line of sight velocity rates in ascending and descending image geometries), levelling (vertical velocity rates) and GNSS (horizontal velocity rates) using least-squares adjustment (LSA). Focusing on the Northern URG area, we analyse SAR data on four different image stacks (ERS ascending, ERS descending, Envisat ascending, Envisat descending) using the Persistent Scatterer (PS) approach. The linear velocity rates in ascending and descending image geometries, respectively, are estimated in an LSA from joint time-series analysis of ERS and Envisat data. Vertical velocity rates from levelling are obtained from a consistent adjustment of more than 40 000 measured height differences using a kinematic displacement model. Horizontal velocity rates in east and north direction are calculated from a time-series analysis of daily coordinate estimates at 76 permanently operating GNSS sites in the URG region. As the locations, at which the measurement data of PS-InSAR, levelling and GNSS reside, do not coincide, spatial interpolation is needed during several steps of the rigorous processing. We use Ordinary Kriging to interpolate from a given set of data points to the locations of interest with a special focus on the modeling and propagation of errors. The final 3-D velocity field is calculated at a 200 m grid, which carries values only close to the location of PS points, resulting in a mean horizontal and vertical precision of 0.30 and 0.13 mm a –1 , respectively. The vertical component of the combined velocity field shows a significant subsidence of about 0.5 mm a –1 in the northern part of the graben coinciding with a well-known quaternary basin structure. Horizontal displacement rates of up to 0.8 mm a –1 in southeast direction are observed outside the graben, in reasonable alignment with the average direction of maximum horizontal stress. Within the graben, the velocity directions rotate toward east in the non-subsiding part, while an opposite trend is observed in the subsiding part of the graben. The complexities of the observed velocity field are compatible to the geomechanical situation in our investigation area which is characterized by a transition from a restraining to a releasing bend setting. Glacial isostatic adjustment is another potential source influencing the observed velocity field, as well as anthropogenic signals due to mining, oil exploration and groundwater usage that have been identified in some places.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-09-06
    Description: The measurement of ongoing ice-mass loss and associated melt water contribution to sea-level change from regions such as West Antarctica is dependent on a combination of remote sensing methods. A key method, the measurement of changes in Earth's gravity via the GRACE satellite mission, requires a potentially large correction to account for the isostatic response of the solid Earth to ice-load changes since the Last Glacial Maximum. In this study, we combine glacial isostatic adjustment modelling with a new GPS dataset of solid Earth deformation for the southern Antarctic Peninsula to test the current understanding of ice history in this region. A sufficiently complete history of past ice-load change is required for glacial isostatic adjustment models to accurately predict the spatial variation of ongoing solid Earth deformation, once the independently-constrained effects of present-day ice mass loss have been accounted for. Comparisons between the GPS data and glacial isostatic adjustment model predictions reveal a substantial misfit. The misfit is localized on the southwestern Weddell Sea, where current ice models under-predict uplift rates by approximately 2 mm yr –1 . This under-prediction suggests that either the retreat of the ice sheet grounding line in this region occurred significantly later in the Holocene than currently assumed, or that the region previously hosted more ice than currently assumed. This finding demonstrates the need for further fieldwork to obtain direct constraints on the timing of Holocene grounding line retreat in the southwestern Weddell Sea and that GRACE estimates of ice sheet mass balance will be unreliable in this region until this is resolved.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-11-05
    Description: Density is a key driver of tectonic processes, but it is a difficult property to define well in the lithosphere because the gravity method is non-unique, and because converting to density from seismic velocity models, themselves non-unique, is also highly uncertain. Here we use a new approach to define the lithospheric density field of Australia, covering from 100°E to 165°E, from 5°N to 55°S and from the crust surface to 300 km depth. A reference model was derived primarily from the recently released Australian Seismological Reference Model, and refined further using additional models of sedimentary basin thickness and crustal thickness. A novel form of finite-element method based deterministic gravity inversion was applied in geodetic coordinates, implemented within the open-source escript modelling environment. Three spatial resolutions were modelled: half-, quarter- and eighth-degree in latitude and longitude, with vertical resolutions of 5, 2.5 and 1.25 km, respectively. Parameter sweeps for the key inversion regularization parameters show that parameter selection is not scale dependent. The sweep results also show that finer resolutions are more sensitive to the uppermost crust, but less sensitive to the mid- to lower-crust and uppermost mantle than lower resolutions. All resolutions show similar sensitivity below about 100 km depth. The final density model shows that Australia's lithospheric density field is strongly layered but also has large lateral density contrasts at all depths. Within the continental crust, the structure of the middle and lower crust differs significantly from the crystalline upper crust, suggesting that the tectonic processes or events preserved in the deep crust differ from those preserved in the shallower crust. The lithospheric mantle structure is not extensively modified from the reference model, but the results reinforce the systematic difference between the density of the oceanic and continental domains, and help identify subdivisions within each. The lithospheric static pressure field was resolved in 3D from the gravity and density fields. The pressure field model also highlights the fundamental difference between the oceanic and continental domains, with the former possessing lower pressure through most of the model. Overall pressure variability is large in the upper crust (60 MPa) but reduces significantly by –30 km elevation (20–30 MPa). By –50 km elevation, thick lower-crust generates further disequilibria (25–35 MPa) that are not compensated until –125 km elevation (10–20 MPa). Beneath –125 km elevation higher pressure is observed in the continental domain, extending to the base of the model. This indicates a lithosphere that is to a large degree isostatically compensated near the base of the felsic-intermediate continental crust, and again near the theoretical base of mature oceanic lithosphere.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...