ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Nucleic acid structure, Computational Methods  (3)
  • Oxford University Press  (3)
  • Copernicus
  • Institute of Physics
  • 2010-2014  (3)
  • 1950-1954
  • 2014  (3)
  • Biology  (3)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
  • 1
    Publication Date: 2014-12-17
    Description: As the biomedical impact of small RNAs grows, so does the need to understand competing structural alternatives for regions of functional interest. Suboptimal structure analysis provides significantly more RNA base pairing information than a single minimum free energy prediction. Yet computational enhancements like Boltzmann sampling have not been fully adopted by experimentalists since identifying meaningful patterns in this data can be challenging. Profiling is a novel approach to mining RNA suboptimal structure data which makes the power of ensemble-based analysis accessible in a stable and reliable way. Balancing abstraction and specificity, profiling identifies significant combinations of base pairs which dominate low-energy RNA secondary structures. By design, critical similarities and differences are highlighted, yielding crucial information for molecular biologists. The code is freely available via http://gtfold.sourceforge.net/profiling.html .
    Keywords: Nucleic acid structure, Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-11
    Description: Telomeres comprise the protective caps of natural chromosome ends and function in the suppression of DNA damage signaling and cellular senescence. Therefore, techniques used to determine telomere length are important in a number of studies, ranging from those investigating telomeric structure to effects on human disease. Terminal restriction fragment (TRF) analysis has for a long time shown to be one of the most accurate methods for quantification of absolute telomere length and range from a number of species. As this technique centers on standard Southern blotting, telomeric DNA is observed on resulting autoradiograms as a heterogeneous smear. Methods to accurately determine telomere length from telomeric smears have proven problematic, and no reliable technique has been suggested to obtain mean telomere length values. Here, we present TeloTool, a new program allowing thorough statistical analysis of TRF data. Using this new method, a number of methodical biases are removed from previously stated techniques, including assumptions based on probe intensity corrections. This program provides a standardized mean for quick and reliable extraction of quantitative data from TRF autoradiograms; its wide application will allow accurate comparison between datasets generated in different laboratories.
    Keywords: Nucleic acid structure, Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-27
    Description: Anti-infection drugs target vital functions of infectious agents, including their ribosome and other essential non-coding RNAs. One of the reasons infectious agents become resistant to drugs is due to mutations that eliminate drug-binding affinity while maintaining vital elements. Identifying these elements is based on the determination of viable and lethal mutants and associated structures. However, determining the structure of enough mutants at high resolution is not always possible. Here, we introduce a new computational method, MC-3DQSAR, to determine the vital elements of target RNA structure from mutagenesis and available high-resolution data. We applied the method to further characterize the structural determinants of the bacterial 23S ribosomal RNA sarcin–ricin loop (SRL), as well as those of the lead-activated and hammerhead ribozymes. The method was accurate in confirming experimentally determined essential structural elements and predicting the viability of new SRL variants, which were either observed in bacteria or validated in bacterial growth assays. Our results indicate that MC-3DQSAR could be used systematically to evaluate the drug-target potentials of any RNA sites using current high-resolution structural data.
    Keywords: Nucleic acid structure, Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...