ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling  (2)
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (2)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes  (2)
  • American Geophysical Union  (6)
  • American Association for the Advancement of Science
  • American Institute of Physics (AIP)
  • Annual Reviews
  • Cambridge University Press
  • Elsevier Inc NY Journals
  • 2010-2014  (6)
  • 1995-1999
  • 1985-1989
  • 1965-1969
  • 1960-1964
  • 1950-1954
  • 2014  (6)
Collection
Publisher
Years
  • 2010-2014  (6)
  • 1995-1999
  • 1985-1989
  • 1965-1969
  • 1960-1964
  • +
Year
  • 1
    Publication Date: 2017-04-04
    Description: We report the paleomagnetic and magnetic fabric results of 58 sites from Cretaceous-Miocene marine and continental strata from the Eastern Cordillera (EC) and the Cucuta zone, at the junction between the Santander Massif and the Merida Andes of Colombia. The EC is an intracontinental doubly vergent range inverting a Triassic to Early Cretaceous rift zone. Twenty-three sites reveal nonsystematic tectonic rotations, including unrotated areas of the EC range with respect to stable South America. Our data show that the EC inverted a NNE oriented rift zone and that the orientation of the Mesozoic rift and the mountain chain roughly correspond. Interestingly, magnetic lineations from anisotropy of magnetic susceptibility analysis do not trend parallel to the chain but rather are oblique to the main orogenic trend. By also considering GPS evidence of a ~1 cm/yr ENE displacement of central western Colombia accommodated by the EC, we suggest that the Miocene-Recent deformation event of this belt arises from ENE oblique convergence reactivating a NNE oriented rift zone. Oblique shortening was likely partitioned into pure dip-slip shear characterizing thick-skinned frontal thrust sheets (well known along both chain fronts) and by range-parallel right-lateral strike-slip faults, which have not been identified yet, but likely exist in the axial part of the EC. Finally, the 35° ± 9° clockwise rotation observed in four post-Miocene magnetically overprinted sites from the Cucuta zone reflects late Cenozoic and ongoing right-lateral strike-slip displacement occurring along faults parallel to the Boconó fault system, possibly connected with the right-lateral faults inferred to exist along the axial part of the EC.
    Description: Published
    Description: 2233–2260
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Paleomagnetism, magnetic fabric, Eastern Cordillera ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Unstable oscillations confined within the mixed layer close to the equator are generated in wind-forced experiments performed in a multilevel general circulation model configured for the tropical Pacific Ocean. The experiments indicate that the waves develop preferentially in the eastern Pacific along the northern temperature front. However, there is clear evidence of a second unstable region along the southern temperature front in the central Pacific. In both regions the instabilities propagate westward, but in the central Pacific their phase speed is considerably smaller. The differences between the wave characteristics in the eastern and central Pacific are closely correlated to the differences in the time mean conditions of the flow. The eastern instabilities have a structure with two peaks in amplitude: one located on the equator and the other a few degrees north of it. Their dispersion characteristics show many similarities to those of tropical instability waves (TIWs) observed in the Pacific Ocean, while the instabilities which grow in the central Pacific do not have any known observed correspondents. We explore the spatial variability of the simulated waves through a wavelet analysis, which provides detailed results on how the period and wavelength of the instabilities change as a function of longitude, latitude, and depth. The wavelet analysis reveals that in the eastern Pacific and close to the surface the TIWs have a phase speed of-48 cm/s, while in the central Pacific they have a phase speed of-11 cm/s. In particular, the change in the phase speed is due to a change in the dominant period of the TIWs: The period of the central Pacific instabilities is considerably longer than the period of the instabilities present in the eastern Pacific.
    Description: This work was supported by the Department of Commerce/NOAA grant NA56GP0026. One of the authors (SM) was partially supported by a NASA Global Change Fellowship NGT-30288.
    Description: Published
    Description: 29613-29635
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: Ocean modeling ; Equatorial Ocean ; Tropical Instability Waves ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Strong changes in seismic radiation, comparable to those preceding and/or accompanying eruptive activity in recent years, were recorded at Mt. Etna volcano, Italy, from November 2005 to January 2006. The amplitude of volcanic tremor peaked in mid-December 2005 after a continuous, slow increase from August 2005 onwards, during which neither effusive nor paroxysmal activity was observed by volcanologists and alpine guides. During this time span, the centroid locations of volcanic tremor moved towards the surface, more and more clustered below the summit craters. The application of pattern classification analysis based on Self-Organizing Maps and fuzzy clustering to volcanic tremor data highlighted variations in the frequency domain as well. These changes were temporally associated with ground deformation variations, as indicative of a mild inflation of the summit of the volcano, and with a conspicuous increase in the SO2 plume-flux emission. Overall, we interpret this evidence as the result of recharging of the volcanic feeder at depth (〉 3 km below sea level) during which magma did not reach the shallow plumbing system.
    Description: Published
    Description: 4989–5005
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: embargoed_20140606
    Keywords: time series analysis ; volcano seismology ; volcano monitoring ; neural network and fuzzy logic ; seismic tomography ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The instability processes which generate unstable waves with chara- cteristics similar to observed tropical instability waves in the Pacific Ocean are examined through a local energy analysis based on deviations from the time mean flow. Numerical experiments indicate that the waves develop preferentially in the eastern Pacific along the northern temperature front and have a westward phase speed and a structure with two peaks in amplitude: one located on the equator and the other a few degrees north of it. The energy analysis shows that the "two-peak" structure of the eastern waves is explained by two different instability processes which occur at different latitudes. In the time mean sense the region north of the equator is baroclinically unstable, while barotropic instability prevails at the equator. The life cycle of the waves is revealed by the time evolution of the energetics. Baroclinic instability is the dominant triggering mechanism which induces growth of the waves along the northern temperature front. The eddy pressure fluxes radiate energy south of the equator where the rneridional shear between the Equatorial Undercurrent and the South Equatorial Current becomes barotropically unstable. From the numerical simulations, there is evidence of a second unstable region in the central Pacific south of the equator where the instabilities have a lower phase speed. The energy analysis also shows that these waves grow from both barotropic and baroclinic conversions.
    Description: This work was supported by the Department of Com- merce/NOAA under grant NA56GP0026. One of the au- thors (SM) was partially supported by a NASA Global Change Fellowship NGT-30288. Another author (AB) was supported by a UCAR Postdoctoral Fellowship
    Description: Published
    Description: 29637-29661
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: Ocean modeling ; Equatorial Ocean ; Tropical Instability Waves ; Ocean wave generation ; Ocean wave energetics ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: From December 2005 to January 2006, an anomalous degassing episode was observed at Mount Etna, well-correlated with an increase in volcanic tremor, and in the almost complete absence of eruptive activity. In the same period, more than 10,000 very long period (VLP) events were detected. Through moment tensor inversion analyses of the VLP pulses, we obtained quantitative estimates of the volumetric variations associated with these events. This allowed a quantitative investigation of the relationship between VLP seismic activity, volcanic tremor, and gas emission rate at Mount Etna. We found a statistically significant positive correlation between SO2 gas flux and volcanic tremor, suggesting that tremor amplitude can be used as a first-order proxy for the background degassing activity of the volcano. VLP volumetric changes and SO2 gas flux are correlated only for the last part of our observations, following a slight change in the VLP source depth. We calculate that the gas associated with VLP signal genesis contributed less than 5% of the total gas emission. The existence of a linear correlation between VLP and degassing activities indicates a general relationship between these two processes. The effectiveness of such coupling appears to depend upon the particular location of the VLP source, suggesting that conduit geometry might play a significant role in the VLP-generating process. These results are the first report on Mount Etna of a quantitative relationship between the amounts of gas emissions directly estimated through instrumental flux measurements and the quantities of gas mass inferred in the VLP source inversion.
    Description: Published
    Description: 4910-4921
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Very Long Period seismicity ; UV scanners network ; Etna Volcano ; volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We use 2.5 to 14 years long position time series from 〉800 continuous Global Positioning System (GPS) stations to study vertical deformation rates in the Euro-Mediterranean region. We estimate and remove common mode errors in position time series using a principal component analysis, obtaining a significant gain in the signal-to-noise ratio of the displacements data. Following the results of a maximum likelihood estimation analysis, which gives a mean spectral index ~ 0.7, we adopt a power law + white noise stochastic model in estimating the final vertical rates and find 95% of the velocities within ±2 mm/yr, with uncertainties from filtered time series ~40% smaller than from the unfiltered ones. We highlight the presence of statistically significant velocity gradients where the stations density is higher. We find undulations of the vertical velocity field at different spatial scales both in tectonically active regions, like eastern Alps, Apennines, and eastern Mediterranean, and in regions characterized by a low or negligible tectonic activity, like central Iberia and western Alps. A correlation between smooth vertical velocities and topographic features is apparent in many sectors of the study area. Glacial isostatic adjustment and weathering processes do not completely explain the measured rates, and a combination of active tectonics and deep-seated geodynamic processes must be invoked. Excluding areas where localized processes are likely, or where subduction processes may be active, mantle dynamics is the most likely process, but regional mantle modeling is required for a better understanding.
    Description: Published
    Description: 6003–6024
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 1R. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: GPS ; Geodynamics ; Mediterranean ; Vertical deformation ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...