ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
  • Mt. Etna
  • Elsevier Science Limited  (3)
  • Wiley-Blackwell  (1)
  • Blackwell Publishing Ltd
  • EGU
  • ELSEVIER
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Springer
  • 2010-2014  (4)
  • 2005-2009
  • 2014  (4)
Sammlung
Schlagwörter
Erscheinungszeitraum
  • 2010-2014  (4)
  • 2005-2009
Jahr
  • 1
    Publikationsdatum: 2017-04-04
    Beschreibung: The 2011 submarine eruption that took place in the proximity of El Hierro Island (Canary Islands, Spain) has raised the need to identify the most likely future emission zones even on volcanoes characterized by low frequency activity. Here, we propose a probabilistic method to build the susceptibility map of El Hierro, i.e. the spatial distribution of vent opening for future eruptions, based on the probabilistic analysis of volcano-structural data of the Island collected through newfieldworkmeasurements, bathymetric information, as well as analysis of geological maps, orthophotos and aerial photographs. These data have been divided into different datasets and converted into separate and weighted probability density functions, which were included in a non-homogeneous Poisson process to produce the volcanic susceptibility map. The most likely area to host new eruptions in El Hierro is in the south-western part of the West rift. High probability locations are also found in the Northeast and South rifts, and along the submarine parts of the rifts. This map represents the first effort to deal with the volcanic hazard at El Hierro and can be a support tool for decision makers in land planning, emergency measures and civil defense actions.
    Beschreibung: This work has been partially funded by the Spanish Geological Survey (IGME) through the MODEX Project (directed by Luis Laín) and a Research Grant for LB, and the Research grant program “Innova Canarias 2020®” from the “Fundación Universitaria de Las Palmas”.
    Beschreibung: Published
    Beschreibung: 21-30
    Beschreibung: 1V. Storia e struttura dei sistemi vulcanici
    Beschreibung: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Beschreibung: 3V. Dinamiche e scenari eruttivi
    Beschreibung: 4V. Vulcani e ambiente
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Susceptibility ; Volcanic hazard ; Eruptive vent ; Volcano-tectonics ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-04
    Beschreibung: This paper describes an application of artificial neural networks for the recognition of volcanic lava flow hot spots using remote sensing data. Satellite remote sensing is a very effective and safe way to monitor volcanic eruptions in order to safeguard the environment and the people affected by such natural hazards. Neural networks are an effective and well-established technique for the classification of satellite images. In addition, once well trained, they prove to be very fast in the application stage. In our study a back propagation neural network was used for the recognition of thermal anomalies affecting hot lava pixels. The network was trained using the three thermal channels of the Advanced Very High Resolution Radiometer (AVHRR) sensor as inputs and the corre- sponding values of heat flux, estimated using a two thermal component model, as reference outputs. As a case study the volcano Etna (Eastern Sicily, Italy) was chosen, and in particular the effusive eruption which took place during the month of 2006 July. The neural network was trained with a time-series of 15 images (12 nighttime images and 3 daytime images) and validated on three independent data sets of AVHRR images of the same eruption and on two relative to an eruption occurred the following month. While for both nighttime and daytime validation images the neural network identified the image pixels affected by hot lava with a 100 per cent success rate, for the daytime images also adjacent pixels were included, apparently not interested by lava flow. Despite these performance differences under different illumination conditions, the proposed method can be considered effective both in terms of classification accuracy and generalization capability. In particular our approach proved to be robust in the rejection of false positives, often corresponding to noisy or cloudy pixels, whose presence in multispectral images can often undermine the performance of traditional classification algorithms. Future work shall address application of the proposed method to data acquired with a high temporal resolution, such as those provided by the spinning enhanced visible and infrared imager sensor on board the Meteosat second generation geostationary satellite.
    Beschreibung: Published
    Beschreibung: 1525-1535
    Beschreibung: 5V. Sorveglianza vulcanica ed emergenze
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Image processing ; Neural networks ; fuzzy logic ; Remote sensing of volcanoes ; Hot-spot detection ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-04-04
    Beschreibung: Between January 2011 and April 2012, the Southeast Crater (SEC) on Mount Etna was the site of 25 episodes of lava fountaining, which led to the construction of a new pyroclastic cone on the eastern flank of the SEC. During these episodes lava overflows reached 4.3 km in length with an area of 3.19 km2 and a volume of 28 x 106 m3. The new cone, informally called New Southeast Crater (NSEC), grew over a pre-existing subsidence depression (pit crater), which had been formed in 2007-2009. The evolution of the NSEC cone was documented from its start by repeated GPS surveys carried out both from a distance and on the cone itself, and by the acquisition of comparison photographs. These surveys reveal that after the cessation of the lava fountains in April 2012, the highest point of the NSEC stood 190 m above the pre-cone surface, while the cone volume was about 19 x 106 m3, representing 38 % of the total (bulk) volume of the volcanic products including pyroclastic fallout erupted in 2011-2012, which is 50 x 106 m3 (about 33 x 106 m3 dense-rock equivalent). Growth of the new cone took place exclusively during the paroxysmal phases of the lava fountaining episodes, which were nearly always rather brief (on the average 2 hours). Overall, the paroxysmal phases of all 25 episodes represent 51 hours of lava fountaining activity – the time needed to build the cone. This is the fastest documented growth of a newborn volcanic cone both in terms of volume and height. Mean effusion rates during the lava fountaining episodes on 20 August 2011 (E11), as well as 12 and 24 April 2012 (E24 and E25) exceeded 500 m3/s (with maximum rates of 980 m3/s during E11) and thus they are among the highest effusion rates ever recorded at Etna. The composition of the erupted products varies in time, reflecting different rates of magma supply into the shallow feeding system, but without notable effects on the eruptive phenomenology. This implies that the dynamics leading to the episodic lava fountaining was largely, though not entirely, controlled by the repeated formation and collapse of a foam layer in the uppermost portion of the magmatic reservoir of the NSEC.
    Beschreibung: Published
    Beschreibung: 10-21
    Beschreibung: 1V. Storia e struttura dei sistemi vulcanici
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Etna, summit eruptions; scoria cone growth; lava and tephra volume; collapsing foam model ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-02-24
    Beschreibung: The Aeolian Arc (Southern Tyrrhenian Sea, Italy) is one of the most active volcanic areas of the Mediterranean basin, affected by volcanic/hydrothermal and seismic activity. Ancient populations settled this region since historical times, building coastal installations which currently are valuable archaeological indicators of relative sea level changes and vertical land movements. In this study we show and discuss data on the relative sea level change estimated from a submerged wharf of Roman age dated between 50 B.C. and 50 A.D., located at Basiluzzo Island. This structure has been studied through marine surveys and archaeological interpretations and is presently located at a corrected depth of 4.10 0.2 m. We explain this submergence by a cumulative effect of the relative sea level change caused by the regional glaciohydro- isostatic signal, active since the end of the last glacial maximum, and the local volcano-tectonic land subsidence. Finally, a total subsidence rate of 2.05 0.1 mm/yr 1, with a volcano-tectonic contribution of 1.43 0.1 mm/yr 1 for the last 2 ka BP, is inferred from the comparison against the latest predicted sea level curve for the Southern Tyrrhenian Sea, suggesting new evaluations of the volcanotectonic hazard for this area of the Aeolian islands.
    Beschreibung: Published
    Beschreibung: 143-150
    Beschreibung: 4V. Vulcani e ambiente
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): Aeolian islands, sea level, crustal deformations ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...