ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • In situ oceanic observations  (4)
  • Mixing  (4)
  • Wind stress
  • American Meteorological Society  (10)
  • Annual Reviews
  • 2010-2014  (10)
  • 2013  (10)
Collection
Publisher
Years
  • 2010-2014  (10)
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 744–765, doi:10.1175/JPO-D-12-067.1.
    Description: This study investigates the coherence between ocean bottom pressure signals at the Rapid Climate Change programme (RAPID) West Atlantic Variability Experiment (WAVE) array on the western North Atlantic continental slope, including the Woods Hole Oceanographic Institution Line W. Highly coherent pressure signals propagate southwestward along the slope, at speeds in excess of 128 m s−1, consistent with expectations of barotropic Kelvin-like waves. Coherent signals are also evidenced in the smaller pressure differences relative to 1000-m depth, which are expected to be associated with depth-dependent basinwide meridional transport variations or an overturning circulation. These signals are coherent and almost in phase for all time scales from 3.6 years down to 3 months. Coherence is still seen at shorter time scales for which group delay estimates are consistent with a propagation speed of about 1 m s−1 over 990 km of continental slope but with large error bounds on the speed. This is roughly consistent with expectations for propagation of coastally trapped waves, though somewhat slower than expected. A comparison with both Eulerian currents and Lagrangian float measurements shows that the coherence is inconsistent with a propagation of signals by advection, except possibly on time scales longer than 6 months.
    Description: This work was funded by the U.K. Natural Environment Research Council. Sofia Olhede was supported by EPSRC Grant EP/I005250/1. Initial observations at StationW(2001–04) were made possible by a grant from the G. Unger Vetlesen Foundation and support from the Woods Hole Oceanographic Institution. Since 2004, the Line W program has been supported by the U.S. National Science Foundation with supplemental contribution from WHOIs Ocean and Climate Change Institute.
    Description: 2013-10-01
    Keywords: Atlantic Ocean ; Boundary currents ; Meridional overturning circulation ; Pressure ; Waves, oceanic ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2234–2253, doi:10.1175/JPO-D-12-033.1.
    Description: Meridional velocity, mass, and heat transport in the equatorial oceans are difficult to estimate because of the nonapplicability of the geostrophic balance. For this purpose a steady-state model is utilized in the equatorial Indian Ocean using NCEP wind stress and temperature and salinity data from the World Ocean Atlas 2005 (WOA05) and Argo. The results show a Somali Current flowing to the south during the winter monsoon carrying −11.5 ± 1.3 Sv (1 Sv ≡ 106 m3 s−1) and −12.3 ± 0.3 Sv from WOA05 and Argo, respectively. In the summer monsoon the Somali Current reverses to the north transporting 16.8 ± 1.2 Sv and 19.8 ± 0.6 Sv in the WOA05 and Argo results. Transitional periods are considered together and in consequence, there is not a clear Somali Current present in this period. Model results fit with in situ measurements made around the region, although Argo data results are quite more realistic than WOA05 data results.
    Description: This study has been partly funded by the MOC Project (CTM 2008- 06438) and the Spanish contribution to the Argo network (AC2009 ACI2009-0998), financed by the Spanish Government and Feder.
    Description: 2013-06-01
    Keywords: Indian Ocean ; Subtropics ; Currents ; Ocean circulation ; Transport ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1589–1610, doi:10.1175/JPO-D-12-0173.1.
    Description: This study investigates the exchange of momentum between the atmosphere and ocean using data collected from four oceanic field experiments. Direct covariance estimates of momentum fluxes were collected in all four experiments and wind profiles were collected during three of them. The objective of the investigation is to improve parameterizations of the surface roughness and drag coefficient used to estimate the surface stress from bulk formulas. Specifically, the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk flux algorithm is refined to create COARE 3.5. Oversea measurements of dimensionless shear are used to investigate the stability function under stable and convective conditions. The behavior of surface roughness is then investigated over a wider range of wind speeds (up to 25 m s−1) and wave conditions than have been available from previous oversea field studies. The wind speed dependence of the Charnock coefficient α in the COARE algorithm is modified to , where m = 0.017 m−1 s and b = −0.005. When combined with a parameterization for smooth flow, this formulation gives better agreement with the stress estimates from all of the field programs at all winds speeds with significant improvement for wind speeds over 13 m s−1. Wave age– and wave slope–dependent parameterizations of the surface roughness are also investigated, but the COARE 3.5 wind speed–dependent formulation matches the observations well without any wave information. The available data provide a simple reason for why wind speed–, wave age–, and wave slope–dependent formulations give similar results—the inverse wave age varies nearly linearly with wind speed in long-fetch conditions for wind speeds up to 25 m s−1.
    Description: This work was funded by the National Science Foundation Grant OCE04-24536 as part of the CLIVAR Mode Water Dynamics Experiment (CLIMODE) and the Office of Naval Research Grant N00014-05-1-0139 as part of the CBLAST-LOW program.
    Description: 2014-02-01
    Keywords: Wind shear ; Wind stress ; Atmosphere-ocean interaction ; Fluxes ; Momentum ; Algorithms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 30 (2013): 1767–1788, doi:10.1175/JTECH-D-12-00140.1.
    Description: Seismic images of oceanic thermohaline finestructure record vertical displacements from internal waves and turbulence over large sections at unprecedented horizontal resolution. Where reflections follow isopycnals, their displacements can be used to estimate levels of turbulence dissipation, by applying the Klymak–Moum slope spectrum method. However, many issues must be considered when using seismic images for estimating turbulence dissipation, especially sources of random and harmonic noise. This study examines the utility of seismic images for estimating turbulence dissipation in the ocean, using synthetic modeling and data from two field surveys, from the South China Sea and the eastern Pacific Ocean, including the first comparison of turbulence estimates from seismic images and from vertical shear. Realistic synthetic models that mimic the spectral characteristics of internal waves and turbulence show that reflector slope spectra accurately reproduce isopycnal slope spectra out to horizontal wavenumbers of 0.04 cpm, corresponding to horizontal wavelengths of 25 m. Using seismic reflector slope spectra requires recognition and suppression of shot-generated harmonic noise and restriction of data to frequency bands with signal-to-noise ratios greater than about 4. Calculation of slope spectra directly from Fourier transforms of the seismic data is necessary to determine the suitability of a particular dataset to turbulence estimation from reflector slope spectra. Turbulence dissipation estimated from seismic reflector displacements compares well to those from 10-m shear determined by coincident expendable current profiler (XCP) data, demonstrating that seismic images can produce reliable estimates of turbulence dissipation in the ocean, provided that random noise is minimal and harmonic noise is removed.
    Description: This work was funded by NSF Grants 0452744, 0405654, and 0648620, and ONR/DEPSCoR Grant DODONR40027.
    Description: 2014-02-01
    Keywords: Mixing ; Thermocline ; Acoustic measurements/effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 698–705, doi:10.1175/JPO-D-12-0119.1.
    Description: Owing to the larger thermal expansion coefficient at higher temperatures, more buoyancy is put into the ocean by heating than is removed by cooling at low temperatures. The authors show that, even with globally balanced thermal and haline surface forcing at the ocean surface, there is a negative density flux and hence a positive buoyancy flux. As shown by McDougall and Garrett, this must be compensated by interior densification on mixing due to the nonlinearity of the equation of state (cabbeling). Three issues that arise from this are addressed: the estimation of the annual input of density forcing, the effects of the seasonal cycle, and the total cabbeling potential of the ocean upon complete mixing. The annual expansion through surface density forcing in a steady-state ocean driven by balanced evaporation–precipitation–runoff (E–P–R) and net radiative budget at the surface Qnet is estimated as 74 000 m3 s−1 (0.07 Sv; 1 Sv ≡ 106 m3 s−1), which would be equivalent to a sea level rise of 6.3 mm yr−1. This is equivalent to approximately 3 times the estimated rate of sea level rise or 450% of the average Mississippi River discharge. When seasonal variations are included, this density forcing increases by 35% relative to the time-mean case to 101 000 m3 s−1 (0.1 Sv). Likely bounds are established on these numbers by using different Qnet and E–P–R datasets and the estimates are found to be robust to a factor of ~2. These values compare well with the cabbeling-induced contraction inferred from independent thermal dissipation rate estimates. The potential sea level decrease upon complete vertical mixing of the ocean is estimated as 230 mm. When horizontal mixing is included, the sea level drop is estimated as 300 mm.
    Description: The authors would like to acknowledge support from the National Aeronautics and Space Administration, Grant NNX12AF59G and the National Science Foundation, Grant OCE-0647949.
    Description: 2013-10-01
    Keywords: Buoyancy ; Conservation equations ; Diapycnal mixing ; Heating ; Mixing ; Heat budgets/fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 30 (2013): 1576–1582, doi:10.1175/JTECH-D-12-00204.1.
    Description: Onset's HOBO U22 Water Temp Pros are small, reliable, relatively inexpensive, self-contained temperature loggers that are widely used in studies of oceans, lakes, and streams. An in-house temperature bath calibration of 158 Temp Pros indicated root-mean-square (RMS) errors ranging from 0.01° to 0.14°C, with one value of 0.23°C, consistent with the factory specifications. Application of a quadratic calibration correction substantially reduced the RMS error to less than 0.009°C in all cases. The primary correction was a bias error typically between −0.1° and 0.15°C. Comparison of water temperature measurements from Temp Pros and more accurate temperature loggers during two oceanographic studies indicates that calibrated Temp Pros have an RMS error of ~0.02°C throughout the water column at night and beneath the surface layer influenced by penetrating solar radiation during the day. Larger RMS errors (up to 0.08°C) are observed near the surface during the day due to solar heating of the black Temp Pro housing. Errors due to solar heating are significantly reduced by wrapping the housing with white electrical tape.
    Description: This work is based on research supported by Awards USA 00002 and KSA 00011 made by King Abdullah University of Science and Technology (KAUST) and by the Ocean Sciences Division of the National Science Foundation under Grant OCE- 0548961.
    Description: 2014-01-01
    Keywords: In situ oceanic observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 766–789, doi:10.1175/JPO-D-12-0141.1.
    Description: Nonlinear energy transfers from the semidiurnal internal tide to high-mode, near-diurnal motions are documented near Kaena Ridge, Hawaii, an energetic generation site for the baroclinic tide. Data were collected aboard the Research Floating Instrument Platform (FLIP) over a 35-day period during the fall of 2002, as part of the Hawaii Ocean Mixing Experiment (HOME) Nearfield program. Energy transfer terms for a PSI resonant interaction at midlatitude are identified and compared to those for near-inertial PSI close to the M2 critical latitude. Bispectral techniques are used to demonstrate significant energy transfers in the Nearfield, between the low-mode M2 internal tide and subharmonic waves with frequencies near M2/2 and vertical wavelengths of O(120 m). A novel prefilter is used to test the PSI wavenumber resonance condition, which requires the subharmonic waves to propagate in opposite vertical directions. Depth–time maps of the interactions, formed by directly estimating the energy transfer terms, show that energy is transferred predominantly from the tide to subharmonic waves, but numerous reverse energy transfers are also found. A net forward energy transfer rate of 2 × 10−9 W kg−1 is found below 400 m. The suggestion is that the HOME observations of energy transfer from the tide to subharmonic waves represent a first step in the open-ocean energy cascade. Observed PSI transfer rates could account for a small but significant fraction of the turbulent dissipation of the tide within 60 km of Kaena Ridge. Further extrapolation suggests that integrated PSI energy transfers equatorward of the M2 critical latitude may be comparable to PSI energy transfers previously observed near 28.8°N.
    Description: This work was supported by the National Science Foundation and the Office of Naval Research.
    Description: 2013-10-01
    Keywords: Diapycnal mixing ; Energy transport ; Internal waves ; Nonlinear dynamics ; Topographic effects ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 2833–2844, doi:10.1175/JCLI-D-12-00181.1.
    Description: The Community Climate System Model, version 4 (CCSM4) is used to assess the climate impact of wind-generated near-inertial waves (NIWs). Even with high-frequency coupling, CCSM4 underestimates the strength of NIWs, so that a parameterization for NIWs is developed and included into CCSM4. Numerous assumptions enter this parameterization, the core of which is that the NIW velocity signal is detected during the model integration, and amplified in the shear computation of the ocean surface boundary layer module. It is found that NIWs deepen the ocean mixed layer by up to 30%, but they contribute little to the ventilation and mixing of the ocean below the thermocline. However, the deepening of the tropical mixed layer by NIWs leads to a change in tropical sea surface temperature and precipitation. Atmospheric teleconnections then change the global sea level pressure fields so that the midlatitude westerlies become weaker. Unfortunately, the magnitude of the real air-sea flux of NIW energy is poorly constrained by observations; this makes the quantitative assessment of their climate impact rather uncertain. Thus, a major result of the present study is that because of its importance for global climate the uncertainty in the observed tropical NIW energy has to be reduced.
    Description: This research was funded as part of the Climate Process Team on internal wave-driven mixing with NSF Grant Nr E0968771 at NCAR.
    Description: 2013-11-01
    Keywords: Fronts ; Inertia-gravity waves ; Mesoscale processes ; Mixing ; Nonlinear dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 222–230, doi:10.1175/JPO-D-12-099.1.
    Description: Observations with fine horizontal resolution are used to identify the horizontal scales of variability over the Middle Atlantic Bight (MAB) shelf break and continental rise. Spray gliders collected observations along two alongshelf transects over the continental rise in March–April 2006 and along 16 cross-shelf transects over the shelf break and continental rise during July–October 2007. Horizontal resolution varied from 1 km or finer over the shelf to 6 km in deep water. These observations allow horizontal thermohaline variability offshore of the MAB shelf break to be examined for the first time. Structure functions of temperature and salinity, the mean square difference between observations separated by specified distances, reveal the horizontal spatial scales in the region. Exponential (e-folding) scales of temperature and salinity increase from 8–13 km near the shelf break to about 30 km over the continental rise. Just offshore of the shelf break, alongshelf structure functions exhibit periodicity with a 40–50-km wavelength that matches the wavelength of shelfbreak frontal meanders. Farther offshore, alongshelf structure functions suggest a dominant wavelength of 175–250 km, but these scales are only marginally resolved by the available observations. Examination of structure functions of along-isopycnal salinity (i.e., spice) suggests that interleaving of shelf and slope water masses contributes most of the horizontal variability near the MAB shelf break, but heaving of isopycnals is the primary source of horizontal variability over the continental rise.
    Description: Glider observations in March–April 2006 were supported by the National Science Foundation through Grant OCE-0220769. Glider observations in July–October 2007 were supported by a grant from Raytheon. RET was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Cooperative Institute for the North Atlantic Region. GGG was supported by the National Science Foundation under Grant OCE-1129125.
    Description: 2013-07-01
    Keywords: Continental shelf/slope ; North Atlantic Ocean ; Fronts ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1841–1861, doi:10.1175/JPO-D-12-0231.1.
    Description: In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly or periodically stratified) tidal estuaries is investigated by means of one-dimensional water column models, with some focus on the sediment availability. Scaling of the underlying dynamic equations shows dependence of the results on the Simpson number (relative strength of horizontal density gradient) and the Rouse number (relative settling velocity) as well as impacts of the Unsteadiness number (relative tidal frequency). Here, the parameter space given by the Simpson and Rouse numbers is mainly investigated. A simple analytical model based on the assumption of stationarity shows that for small Simpson and Rouse numbers sediment flux is down estuary and vice versa for large Simpson and Rouse numbers. A fully dynamic water column model coupled to a second-moment turbulence closure model allows to decompose the sediment flux profiles into contributions from the transport flux (product of subtidal velocity and sediment concentration profiles) and the fluctuation flux profiles (tidal covariance between current velocity and sediment concentration). Three different types of bottom sediment pools are distinguished to vary the sediment availability, by defining a time scale for complete sediment erosion. For short erosion times scales, the transport sediment flux may dominate, but for larger erosion time scales the fluctuation sediment flux largely dominates the tidal sediment flux. When quarter-diurnal components are added to the tidal forcing, up-estuary sediment fluxes are strongly increased for stronger and shorter flood tides and vice versa. The theoretical results are compared to field observations in a tidally energetic inlet.
    Description: Project funding was provided by the German Research Foundation (DFG) in the framework of the Project ECOWS (Role of Estuarine Circulation for Transport of Suspended Particulate Matter in the Wadden Sea, BU 1199/11) and by the German Federal Ministry of Research and Education in the framework of the Project PACE [The future of the Wadden Sea sediment fluxes: still keeping pace with sea level rise? (FKZ 03F0634A)].
    Description: 2014-03-01
    Keywords: Channel flows ; Coastal flows ; Mixing ; Transport ; Turbulence ; Single column models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...