ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (5)
  • 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
  • Climate change
  • Wiley-Blackwell  (4)
  • Istituto Nazionale di Geofisica e Vulcanologia  (1)
  • American Institute of Physics
  • American Institute of Physics (AIP)
  • Athens, Greece
  • WorldFish
  • 2010-2014  (5)
  • 2013  (5)
Collection
  • Articles  (5)
Publisher
Years
  • 2010-2014  (5)
Year
  • 1
    Publication Date: 2017-04-04
    Description: We used the SBAS DInSAR analysis technique to estimate the interseismic deformation along the western part of the Doruneh fault system (DFS), northeastern Iran. We processed 90 ENVISAT images from four different frames from ascending and descending orbits. Three of the ground velocity maps show a significant interseismic signal. Using a simple dislocation approach we model 2-D velocity profiles concerning three InSAR data set relative to the western part of the DFS, obtaining a good fit to the observations. The resulting model indicates that a slip rate of ∼5mmyr−1 accumulates on the fault below 10 km depth, and that in its western sector the Doruneh fault is not purely strike-slip (left-lateral) as in its central part, but shows a significant thrust component. Based on published geological observations, and assuming that all interseismic deformation is recovered with a single event, we can estimate a characteristic recurrence interval between 630 and 1400 yr.
    Description: Published
    Description: 622-628
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Image processing; Satellite geodesy; Seismic cycle; Radar interferometry; Seismicity and tectonics; Continental tectonics: strike-slip and transform. ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The peculiar source characteristics of long-period seismic events (time persistency of the source, low-frequency peaks in the source spectrum, absence of high-frequency radiation) prevent the formation of a definite high-frequency coda in the seismograms. In contrast, this is well formed in volcano–tectonic quakes. For this reason, the widely used duration magnitude scale that is based on the proportionality between the energy and the coda duration cannot be used for long-period estimation. In observatory practice, the long-period magnitude is sometimes estimated using the same duration magnitude scale, leading to confusing results. In this report, we show a new method to estimate the magnitude of long-period events that generally occur for volcanoes, with some application examples from data for Mt Etna (Italy), Colima Volcano (Mexico) and Campi Flegrei (Italy).
    Description: Published
    Description: 911-919
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source observations; ; Volcano monitoring ; Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: For decades, many authors have attempted to define the location, geometry and kinematics of the causative fault for the 1908 December 28, M 7.1 earthquake that struck the Messina Straits between Sicily and Calabria (southern Italy). The coseismic displacement caused a predominant downwarping of the Straits and small land uplift away from it, which were documented by levelling surveys performed 1 yr before and immediately after the earthquake. Most of the source models based on inversion of levelling data suggested that the earthquake was caused by a low angle, east-dipping blind normal fault, whose upper projection intersects the Earth surface on the Sicilian (west) side of the Messina Straits.An alternative interpretation holds that the causative fault is one of the high-angle, west-dipping faults located in southern Calabria, on the eastern side of the Straits, and may in large part coincide with the mapped Armo Fault. Here, we critically review the levelling data with the aim of defining both their usefulness and limits in modelling the seismogenic fault. We demonstrate that the levelling data alone are not capable of discriminating between the two oppositely dipping fault models, and thus their role as a keystone for modellers is untenable. However, new morphotectonic and geodetic data indicate that the Armo Fault has very recent activity and is accumulating strain. The surface observations, together with appraisal ofmacroseismic intensity distribution, available seismic tomography and marine geophysical evidence, lends credit to the hypothesis that the Armo and possibly the S. Eufemia faults are part of a major crustal structure that slipped during the 1908 earthquake.
    Description: Published
    Description: 1025-1041
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source ; Messina Straits ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In the 1980's, from an analysis of satellite images, Russian scientists reported on a short-term thermal infrared radiation enhancement that occurred before some medium-to-large earthquakes in central Asia [Gorny et al. 1988]. Since then, many researchers have been studying earthquake thermal anomalies with satellite remote sensing data [Qiang et al. 1991, Tronin 1996, Tramutoli et al. 2001, Ouzounov and Freund 2004, Saraf and Choudhury 2004, Aliano et al. 2008, Blackett et al. 2011]. Recently, abnormal surface latent heat flux [Dey and Singh 2003, Cervone et al. 2005, Qin et al. 2009, Qin et al. 2011, Qin et al. 2012], outgoing long-wave radiation [Ouzounov et al. 2007] and microwave radiation [Takashi and Tadashi 2010] have also been shown to precede earthquakes. To investigate the possible physical mechanisms of such satellite thermal anomalies, some studies conducted a series of detecting experiments on rock loaded to fracturing [Wu et al. 2000, Freund 2002, Wu et al. 2002, Wu et al. 2006a, Wu et al. 2006b, Freund et al. 2007], and some hypotheses have been proposed. These have included: leaking of pore-gas, and hence the resulting greenhouse effect [Qiang et al. 1995]; activating and recombining of p-holes during rock deformation [Freund 2002]; release of latent heat due to near-surface air ionization [Pulinets et al. 2006], and stress-induced thermal effects due to friction and fluids [Wu and Liu 2009]. According to the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology), two major earthquakes with almost the same large magnitudes struck northern Italy, on the Po Plain in the Emilia Region. The first hit on May 20, 2012, at 02:03 UTC, with ML 5.9 (44.89 °N, 11.23 °E; 6 km in depth), and the second on May 29, 2012, at 07:00 UTC, with ML 5.8 (44.85 °N, 11.09 °E; 10 km in depth). These caused a total of 27 deaths and widespread damage. In this study, the long-term temperature data from both satellite and ground (with greater emphasis on the satellite data) have been used to determine whether there were thermal anomalies associated with this Emilia 2012 seismic sequence. In particular, the next section will be dedicated to describing both the data and the method of analysis. In Section 3, we provide the more significant results, which we discuss in Section 4, together with the main conclusions. We acknowledge that this work cannot be exhaustive, as it will require more data and analyses. However, although further studies will be welcome, we are confident that we have done the best with the data at our disposal.
    Description: Published
    Description: 823-828
    Description: 1.10. TTC - Telerilevamento
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: earthquake event ; numerical method ; surface temperature ; Emilia-Romagna, Italy ; Emilia ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-24
    Description: The broad availability of geodetic measurements for the Mw 6.3 April 6th 2009 L’Aquila earthquake allowed an unprecedented description of the co- and post-seismic ground deformations, leading to the definition of the Paganica fault geometry and kinematics. Through DInSAR, we found, in a wide area of 20 kilometres on the Paganica hangingwall, a further displacement up to 7 cm, which might have occurred in the earthquake proximity. In this study, we explore the possibility of the co-, post- and pre-seismic alternative scenarios. Although our data are not sufficient to undoubtedly prove that this signal occurred before the main event, this seems to be the most likely hypothesis based on tectonics constraints and image acquisition times. The nature of this deformation remains unclear, but we speculate that deep fluids played a role. These results can drive ad hoc requirements for future space-based missions and design of the GPS network.
    Description: Published
    Description: 343–351
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: restricted
    Keywords: InSAR ; L'Aquila earthquake ; GPS ; Anomalous signature ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...