ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate  (2)
  • American Meteorological Society  (2)
  • Periodicals Archive Online (PAO)
  • Springer
  • 2010-2014  (2)
  • 1995-1999
  • 1990-1994
  • 1935-1939
  • 2013  (2)
Collection
Publisher
Years
  • 2010-2014  (2)
  • 1995-1999
  • 1990-1994
  • 1935-1939
Year
  • 1
    Publication Date: 2017-04-04
    Description: Global-scale variations in the climate system over the last half of the twentieth century. including long-term increases in global-mean near-surface temperatures. are consistent with concurrent human-induced emissions of radiatively active gases and aerosols. However, such consistency does not preclude the possible influence of other forcing agents, including internal modes of climate variability or unaccounted for aerosol effects. To test whether other unknown forcing agents may have contributed to multidecadal increases in global-mean near-surface temperatures from 1950 to 2000. data pertaining to observed changes in global-scale sea surface temperatures and observed changes in radiatively active atmospheric constituents are incorporated into numerical global climate models. Results indicate that the radiative forcing needed to produce the observed long-term trends in sea surface temperatures-and global-mean near-surface temperatures-is provided predominantly by known changes in greenhouse gases and aerosols. Further, results indicate that less than 10% of the long-term historical increase in global-mean near-surface temperatures over the last half of the twentieth century could have been the result of internal climate variability. In addition. they indicate that less than 25% of the total radiative forcing needed to produce the observed long-term trend in global-mean near-surface temperatures could have been provided by changes in net radiative forcing from unknown sources (either positive or negative). These results, which are derived from simple energy balance requirements. emphasize the important role humans have played in modifying the global climate over the last half of the twentieth century.
    Description: Published
    Description: 7163-7172
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: climate forcing ; temperature increase ; AGCM ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this work the authors investigate possible changes in the distribution of heavy precipitation events under a warmer climate, using the results of a set of 20 climate models taking part in the Coupled Model Intercomparison Project phase 5 effort (CMIP5). Future changes are evaluated as the difference between the last four decades of the 21st and the 20th Century assuming the Representative Concentration Pathway RCP8.5 scenario. As a measure of the width of the right tail of the precipitation distribution, we use the difference between the 99th and the 90th percentiles. Despite a slight tendency to underestimate the observed heavy precipitation, the considered CMIP5 models well represent the observed patterns in terms of the ensemble average, during both summer and winter seasons for the 1997-2005 period. Future changes in average precipitation are consistentwith previous findings based on CMIP3 models. CMIP5 models show a projected increase for the end of the twenty-first century of the width of the right tail of the precipitation distribution, particularly pronounced over India, South East Asia, Indonesia and Central Africa during borealsummer, as well as over South America and southern Africa during boreal winter.
    Description: Published
    Description: 7902–7911
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: precipitation ; extreme events ; climate change ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...