ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (3)
  • Acoustics
  • Applied geophysics
  • Data analysis / ~ processing
  • Fluids
  • Schussler
  • Textbook of geophysics
  • Istituto Nazionale di Geofisica e Vulcanologia  (2)
  • Elsevier  (1)
  • Cambridge Univ. Press
  • W.H. Freeman
  • 2010-2014  (3)
  • 2000-2004
  • 1980-1984
  • 2013  (3)
Collection
Keywords
Years
  • 2010-2014  (3)
  • 2000-2004
  • 1980-1984
Year
  • 1
    Publication Date: 2017-04-04
    Description: The typical earthquakes occurring at Mt. Vesuvius are Volcano-Tectonic. On July 20, 2003, an unusual earthquake with low and narrow frequency content was detected. The seismograms presented an emergent onset and a nearly monochromatic spectrum at all stations of the Osservatorio Vesuviano(Istituto Nazionale di Geofisica e Vulcanologia) seismic network. The event was located at about 4 km b.s.l. close to the crater axis and an equivalent duration magnitude of 0.6 was estimated. The nature of this event was investigated by comparing its features with those of two typical Volcano-Tectonic earthquakes occurred inside the same source volume. We compared the spectral content calculating the spectrograms and the coda patterns using the Hilbert Transform. A Seismic Moment Tensor inversion was performed on the low frequency earthquake. The focal mechanisms for the two Volcano-Tectonic earthquakes were estimated with a classical technique and resulted compatible with the stress field acting on the volcano. Taking into account the clear differences with the typical Volcano-Tectonic events as well as the peculiarities retrieved from our analyses (monochromatic, low frequency spectral content, and sustained coda) and also some geochemical observations, we classify the unusual low frequency seismic event detected at Mt. Vesuvius as Long Period earthquake and propose that its origin could be linked to a pressure drop in the deep hydrothermal system.
    Description: Published
    Description: S0440
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: Volcano monitoring ; Volcanic event classification ; Long Period earthquake ; Signal analysis ; Hydrothermal system ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: One of the main issues in seismic monitoring of active volcanic areas is the accurate location of earthquake hypocenters. Volcano-tectonic seismicity is often characterized by small magnitude swarms, recorded by few seismic stations with a high picking uncertainty. Sometimes events lacks clear S-wave arrivals, due to the nature of some volcanic sources. All these features, together with the complex crustal structure of volcanoes, makes the earthquake location problem critical in such areas. One of the most important effort for improving the quality of hypocenter location is the use of realistic 3D velocity models. In the last 10 years, several scientific papers proposed 2D and 3D velocity models for Mt. Vesuvius, Campi Flegrei and the Gulf of Naples. They comes from both active seismic data (VESUVIO 94, TOMOVES 96, MAREVES 97 and SERAPIS 2001 experiments) and from local earthquake tomography. In this report we propose a global unified velocity model spanning from Ischia island to Appennine Mts. that allows us to locate earthquakes in the Neapolitan volcanic areas and in the Gulf of Naples. This model comes from a weighted averaging of 5 tomographic velocity models and a background regional model. Most of the model provides only P-wave velocities, only 2 models, obtained through local earthquake tomography at Mt. Vesuvius and Campi Flegrei also gives a S-wave velocity estimate. We show the difference between this new model and the previous 1D models adopted for routine locations at INGV-Osservatorio Vesuviano. We also relocate some events, using non-linear techniques showing differences in hypocenter position from previous locations and the improvement in final traveltime residuals and location uncertainties.
    Description: Published
    Description: 375-390
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: open
    Keywords: Volcano-tectonic seismicity ; 3D velocity model ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Repeating volcano-tectonic (VT) earthquakes, taking place at Mt. Etna during 1999–2009,were detected and analyzed to investigate their behavior. We found 735 families amounting to 2479 VT earthquakes, representing ~38% of all the analyzed VT earthquakes. The number of VT earthquakes making up the families ranges from 2 to 23. Over 70% of the families comprise 2 or 3 VT earthquakes and only 20 families by more than 10 events. The occurrence lifetime is also highly variable ranging from some minutes to ten years. In particular, more than half of the families have a lifetime shorter than 0.5 day and only ~10% longer than 1 year. On the basis of these results, most of the detected families were considered “burst-type”, i.e., show swarm-like occurrence, and hence their origin cannot be explained by a temporally constant tectonic loading. Indeed, since the analyzed earthquakes take place in a volcanic area, the rocks are affected not only by tectonic stresses related to the fairly steady regional stress field but also by local stresses, caused by the volcano, such as magma batch intrusions/ movements and gravitational loading.We focused on the five groups of families characterized by the longest repeatability over time, namely high number of events and long lifetime, located in the north-eastern, eastern and southern flanks of the volcano. Unlike the first four groups, which similarly to most of the detected families show swarm-like VT occurrences, group “v”, located in the north-eastern sector, exhibits a more “tectonic” behavior with the events making up such a group spread over almost the entire analyzed period. It is clear how both occurrence and slip rates do not remain constant but vary over time, and such changes are time-related to the occurrence of the 2002–2003 eruption. Finally, by FPFIT algorithm a good agreement between directions identified by nodal planes and the earthquake epicentral distribution was generally found.
    Description: Published
    Description: 1223 – 1236
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: repeating earthquakes ; Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...