ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Design, Testing and Performance
  • Chemistry
  • Seismology
  • 2010-2014  (46)
  • 2005-2009
  • 1950-1954
  • 2013  (46)
  • 1
    Publication Date: 2013-04-05
    Description: The technological demand to push the gigahertz (10(9) hertz) switching speed limit of today's magnetic memory and logic devices into the terahertz (10(12) hertz) regime underlies the entire field of spin-electronics and integrated multi-functional devices. This challenge is met by all-optical magnetic switching based on coherent spin manipulation. By analogy to femtosecond chemistry and photosynthetic dynamics--in which photoproducts of chemical and biochemical reactions can be influenced by creating suitable superpositions of molecular states--femtosecond-laser-excited coherence between electronic states can switch magnetic order by 'suddenly' breaking the delicate balance between competing phases of correlated materials: for example, manganites exhibiting colossal magneto-resistance suitable for applications. Here we show femtosecond (10(-15) seconds) photo-induced switching from antiferromagnetic to ferromagnetic ordering in Pr0.7Ca0.3MnO3, by observing the establishment (within about 120 femtoseconds) of a huge temperature-dependent magnetization with photo-excitation threshold behaviour absent in the optical reflectivity. The development of ferromagnetic correlations during the femtosecond laser pulse reveals an initial quantum coherent regime of magnetism, distinguished from the picosecond (10(-12) seconds) lattice-heating regime characterized by phase separation without threshold behaviour. Our simulations reproduce the nonlinear femtosecond spin generation and underpin fast quantum spin-flip fluctuations correlated with coherent superpositions of electronic states to initiate local ferromagnetic correlations. These results merge two fields, femtosecond magnetism in metals and band insulators, and non-equilibrium phase transitions of strongly correlated electrons, in which local interactions exceeding the kinetic energy produce a complex balance of competing orders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Tianqi -- Patz, Aaron -- Mouchliadis, Leonidas -- Yan, Jiaqiang -- Lograsso, Thomas A -- Perakis, Ilias E -- Wang, Jigang -- England -- Nature. 2013 Apr 4;496(7443):69-73. doi: 10.1038/nature11934.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23552945" target="_blank"〉PubMed〈/a〉
    Keywords: Biology ; Chemistry ; Circular Dichroism ; Electronics ; Iron/chemistry ; *Magnetic Phenomena ; Magnetics ; Optics and Photonics ; Photosynthesis ; *Quantum Theory ; Temperature ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGee, Harold -- England -- Nature. 2013 Dec 19;504(7480):372-4. doi: 10.1038/504372a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24352277" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspergillus/metabolism ; Beer/microbiology ; Cheese/microbiology ; Chemistry ; *Fermentation ; *Food Technology ; Microbiology ; Saccharomyces cerevisiae/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shechtman, Dan -- England -- Nature. 2013 Oct 17;502(7471):S54-5. doi: 10.1038/502S54a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24132333" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry ; Developing Countries ; Education/statistics & numerical data ; Entrepreneurship/*economics ; Leadership ; Nobel Prize ; Research ; Technology/*economics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Results are presented and discussed for drag coefficients of droplets with diameters in the range of 300 to 1800 micrometers, and airfoil velocities of 50, 70 and 90 meters/second. The effect of droplet oscillation on the drag coefficient is discussed.
    Keywords: Aircraft Design, Testing and Performance
    Type: GRC-E-DAA-TN9749 , AIAA Atmospheric and Space Environments Conference; Jun 24, 2013 - Jun 27, 2013; San Diego/CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A high fidelity simulation using a PC based Trick framework has been developed for Johnson Space Center's Morpheus test bed flight vehicle. There is an iterative development loop of refining and testing the hardware, refining the software, comparing the software simulation to hardware performance and adjusting either or both the hardware and the simulation to extract the best performance from the hardware as well as the most realistic representation of the hardware from the software. A Particle Swarm Optimization (PSO) based technique has been developed that increases speed and accuracy of the iterative development cycle. Parameters in software can be automatically tuned to make the simulation match real world subsystem data from test flights. Special considerations for scale, linearity, discontinuities, can be all but ignored with this technique, allowing fast turnaround both for simulation tune up to match hardware changes as well as during the test and validation phase to help identify hardware issues. Software models with insufficient control authority to match hardware test data can be immediately identified and using this technique requires very little to no specialized knowledge of optimization, freeing model developers to concentrate on spacecraft engineering. Integration of the PSO into the Morpheus development cycle will be discussed as well as a case study highlighting the tool's effectiveness.
    Keywords: Aircraft Design, Testing and Performance
    Type: JSC-CN-28933 , AIAA Modeling and Simulation Technologies Conference; Aug 19, 2013 - Aug 22, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This paper proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-E-DAA-TN9734 , 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jun 24, 2013; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A history of the development of rotorcraft comprehensive analyses is presented. Comprehensive analyses are digital computer programs that calculate the aeromechanical behavior of the rotor and aircraft, bringing together the most advanced models of the geometry, structure, dynamics, and aerodynamics available in rotary wing technology. The development of the major codes of the last five decades from industry, government, and universities is described. A number of common themes observed in this history are discussed.
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN8250 , American Helicopter Society (AHS) 69th Annual Forum and Technology Display; May 21, 2013 - May 23, 2013; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Maintenance of laminar flow under operational flight conditions is being investigated under NASA s Environmentally Responsible Aviation (ERA) Program. Among the challenges with natural laminar flow is the accretion of residues from insect impacts incurred during takeoff or landing. Depending on air speed, temperature, and wing structure, the critical residue height for laminar flow disruption can be as low as 4 microns near the leading edge. In this study, engineered surfaces designed to minimize insect residue adhesion were examined. The coatings studied included chemical compositions containing functional groups typically associated with abhesive (non-stick) surfaces. To reduce surface contact by liquids and enhance abhesion, the engineered surfaces consisted of these coatings doped with particulate additives to generate random surface topography, as well as coatings applied to laser ablated surfaces having precision patterned topographies. Performance evaluation of these surfaces included contact angle goniometry of pristine coatings and profilometry of surfaces after insect impacts were incurred in laboratory scale tests, wind tunnel tests and flight tests. The results illustrate the complexity of designing antifouling surfaces for effective insect contamination mitigation under dynamic conditions and suggest that superhydrophobic surfaces may not be the most effective solution for preventing insect contamination on aircraft wing leading edges.
    Keywords: Aircraft Design, Testing and Performance
    Type: NF1676L-15481 , SAMPE 2013; May 06, 2013 - May 09, 2013; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The force-feel system characteristics of the cyclic inceptors of most helicopters are set based on the characteristics of the mechanical components in the control system (mass, springs, friction dampers, etc.). For these helicopters, the force-feel characteristics typically remain constant over the entire flight envelope, with perhaps a trim release to minimize control forces while maneuvering. With the advent of fly-by-wire control systems and active inceptors in helicopters, the force-feel characteristics are now determined by the closed-loop response of the active inceptor itself as defined by the inertia, force/displacement gradient, damping, breakout force and detent shape configuration parameters in the inceptor control laws. These systems give the flexibility to dynamically prescribe different feel characteristics for different control modes or flight conditions, and the ability to provide tactile cueing to the pilot through the actively controlled side-stick or center-stick cyclic inceptor. For rotorcraft, a few studies have been conducted to assess the effects of cyclic force-feel characteristics on handling qualities in flight. An early study provided valuable insight into the static force-deflection characteristics (force gradient) and the number of axes controlled by the side-stick controller for the U.S. Army's Advanced Digital/Optical Control System (ADOCS) demonstrator aircraft [1]. The first of a series of studies providing insight on the inceptor dynamic force-feel characteristics was conducted on the NASA/Army CH-47B variable-stability helicopter [2]. This work led to a proposed requirement that set boundaries based on the cyclic natural frequency and inertia, with the stipulation of a lower damping ratio limit of 0.3 [3]. A second study was conducted by the Canadian Institute for Aerospace Research using their variable-stability Bell 205A helicopter [4]. This research suggested boundaries for stick dynamics based on natural frequency and damping ratio. While these two studies produced boundaries for acceptable/unacceptable stick dynamics for rotorcraft, they were not able to provide guidance on how variations of the stick dynamics in the acceptable region impact handling qualities. More recently, a ground based simulation study [5] suggested little benefit was to be obtained from variations of the damping ratio for a side-stick controller exhibiting high natural frequencies (greater than 17 rad/s) and damping ratios (greater than 2.0). A flight test campaign was conducted concurrently on the RASCAL JUH-60A in-flight simulator and the ACT/FHS EC-135 in flight simulator [6]. Upon detailed analysis of the pilot evaluations the study identified a clear preference for a high damping ratio and natural frequency of the center stick inceptors. Side stick controllers were found to be less sensitive to the damping. While these studies have compiled a substantial amount of data, in the form of qualitative and quantitative pilot opinion, a fundamental analysis of the effect of the inceptor force-feel system on flight control is found to be lacking. The study of Ref. [6] specifically concluded that a systematic analysis was necessary, since discrepancies with the assigned handling qualities showed that proposed analytical design metrics, or criteria, were not suitable. The overall goal of the present study is to develop a clearer fundamental understanding of the underlying mechanisms associated with the inceptor dynamics that govern the handling qualities using a manageable analytical methodology.
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN6233 , 69th American Helicopter Society Annual Forum; May 21, 2013 - May 23, 2013; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Multiple compound helicopter configurations are designed using a combination of rotorcraft sizing and comprehensive analysis codes. Results from both the conceptual design phase and rotor comprehensive analysis are presented. The designs are evaluated for their suitability to a short-to-medium-haul civil transport mission carrying a payload of 90 passengers. Multiple metrics are used to determine the best configuration, with heavy emphasis placed on minimizing fuel burn.
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN6212 , 69th American Helicopter Society Annual Forum; May 21, 2013 - May 23, 2013; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept, developed by The Boeing Company, has been extensively studied as part of the National Aeronautics and Space Administration's (NASA s) Environmentally Responsible Aviation (ERA) Program. The PRSEUS concept provides a light-weight alternative to aluminum or traditional composite design concepts and is applicable to traditional-shaped fuselage barrels and wings, as well as advanced configurations such as a hybrid wing body or truss braced wings. Therefore, NASA, the Federal Aviation Administration (FAA) and The Boeing Company partnered in an effort to assess the performance and damage arrestments capabilities of a PRSEUS concept panel using a full-scale curved panel in the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. Testing was conducted in the FASTER facility by subjecting the panel to axial tension loads applied to the ends of the panel, internal pressure, and combined axial tension and internal pressure loadings. Additionally, reactive hoop loads were applied to the skin and frames of the panel along its edges. The panel successfully supported the required design loads in the pristine condition and with a severed stiffener. The panel also demonstrated that the PRSEUS concept could arrest the progression of damage including crack arrestment and crack turning. This paper presents the nonlinear post-test analysis and correlation with test results for the curved PRSEUS panel. It is shown that nonlinear analysis can accurately calculate the behavior of a PRSEUS panel under tension, pressure and combined loading conditions.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2013-1736 , NF1676L-15294 , 54th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics, and Materials Conference; Apr 08, 2013 - Apr 11, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: Through a recent NASA contract, Boeing Research and Technology in Huntington Beach, CA developed and optimized a conceptual design of an open rotor hybrid wing body aircraft (HWB). Open rotor engines offer a significant potential for fuel burn savings over turbofan engines, while the HWB configuration potentially allows to offset noise penalties through possible engine shielding. Researchers at NASA Langley converted the Boeing design to a FLOPS model which will be used to develop take-off and landing trajectories for community noise analyses. The FLOPS model was calibrated using Boeing data and shows good agreement with the original Boeing design. To complement Boeing s detailed aerodynamics and propulsion airframe integration work, a newly developed and validated conceptual structural analysis and optimization tool was used for a conceptual loads analysis and structural weights estimate. Structural optimization and weight calculation are based on a Nastran finite element model of the primary HWB structure, featuring centerbody, mid section, outboard wing, and aft body. Results for flight loads, deformations, wing weight, and centerbody weight are presented and compared to Boeing and FLOPS analyses.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2013-1688 , NF1676L-15288 , 54th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics, and Materials Conference; Apr 08, 2013 - Apr 11, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: The hybrid wing body center section test article is an all-composite structure made of crown, floor, keel, bulkhead, and rib panels utilizing the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) design concept. The primary goal of this test article is to prove that PRSEUS components are capable of carrying combined loads that are representative of a hybrid wing body pressure cabin design regime. This paper summarizes the analytical approach, analysis results, and failure predictions of the test article. A global finite element model of composite panels, metallic fittings, mechanical fasteners, and the Combined Loads Test System (COLTS) test fixture was used to conduct linear structural strength and stability analyses to validate the specimen under the most critical combination of bending and pressure loading conditions found in the hybrid wing body pressure cabin. Local detail analyses were also performed at locations with high stress concentrations, at Tee-cap noodle interfaces with surrounding laminates, and at fastener locations with high bearing/bypass loads. Failure predictions for different composite and metallic failure modes were made, and nonlinear analyses were also performed to study the structural response of the test article under combined bending and pressure loading. This large-scale specimen test will be conducted at the COLTS facility at the NASA Langley Research Center.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper-2013-1734 , NF1676L-15296 , 54th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics, and Materials Conference; Apr 08, 2013 - Apr 11, 2013; Boston, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: Multiple metrics are applied to the design of a large civil tiltrotor, integrating minimum cost and minimum environmental impact. The design mission is passenger transport with similar range and capacity to a regional jet. Separate aircraft designs are generated for minimum empty weight, fuel burn, and environmental impact. A metric specifically developed for the design of aircraft is employed to evaluate emissions. The designs are generated using the NDARC rotorcraft sizing code, and rotor analysis is performed with the CAMRAD II aeromechanics code. Design and mission parameters such as wing loading, disk loading, and cruise altitude are varied to minimize both cost and environmental impact metrics. This paper presents the results of these parametric sweeps as well as the final aircraft designs.
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN7037 , AIAA Aerospace Sciences Meeting; Jan 07, 2013 - Jan 10, 2013; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2013-0329 , NF1676L-14882 , 51st AIAA Aerospace Sciences Meeting; Jan 07, 2013 - Jan 10, 2013; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise levels. The primary structural concept being developed under the ERA project in the Airframe Technology element is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. This paper describes how researchers at NASA and The Boeing Company are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size aircraft with high aspect ratio wings or unconventional shapes such as a hybrid wing body airplane design.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2013-0410 , NF1676L-14712 , 51st AIAA Aerospace Sciences Meeting; Jan 07, 2013 - Jan 10, 2013; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: As an approach to light-weight, cost-effective and manufacturable structures required to enable the hybrid wing body aircraft, The Boeing Company, Inc. and NASA have developed the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. A PRSEUS pressure cube was developed as a risk reduction test article to examine a new integral cap joint concept as part of a building block approach for technology development of the PRSEUS concept. The overall specimen strength exceeded the 18.4 psi load requirement as testing resulted in the cube reaching a final pressure load of around 48 psi prior to catastrophic failure. The cube pressure test verified that the joints and structure were capable of sustaining the required loads, and represented the first testing of joined PRSEUS structure. This paper will address the damage arrestment performance of the stitched PRSEUS structure. Following catastrophic failure of the cube, ultrasonic pulse-echo inspection found that the localized damage, surrounding a barely-visible impact damage site, did not change noticeably between just after impact and catastrophic failure of the cube, and did not play a role in the catastrophic failure event. Ultrasonic inspection of the remaining intact cube panels presented three basic types of indications: delaminations between laminae parallel to the face sheets, lying between face sheet and tear strap layers, or between tear strap and flange layers; delaminations above the noodles of stringers, frames or integral caps, lying within face sheet or tear strap layers; and delaminations between the laminae in the inner fillets of the integral caps, where pulloff stresses were expected to be highest. Delaminations of all three types were predominantly contained by the first row of stitches encountered. For the small fraction of delaminations extending beyond the first row of stitches, all were contained by the second stitch row.
    Keywords: Aircraft Design, Testing and Performance
    Type: NF1676L-17340 , Annual Review of Progress in Quantitative Nondestructive Evaluation; Jul 21, 2013 - Jul 26, 2013; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2013-1516 , NF1676L-16185 , AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 08, 2013 - Apr 11, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: This paper explores a comparison between experimental data and numerical simulations of the historical baseline F31/A31 open rotor geometry. The experimental data were obtained at the NASA Glenn Research Center s Aeroacoustic facility and include performance and noise information for a variety of flow speeds (matching take-off and cruise). The numerical simulations provide both performance and aeroacoustic results using the NUMECA s Fine-Turbo analysis code. A non-linear harmonic method is used to capture the rotor/rotor interaction.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-2013-217707 , AIAA Paper-2012-3823 , E-18631 , 48th Joint Propulsion Conference and Exhibit; Jul 30, 2012 - Aug 01, 2012; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: Geometric modeling of aircraft during the Conceptual design phase is very different from that needed for the Preliminary or Detailed design phases. The Conceptual design phase is characterized by the rapid, multi-disciplinary analysis of many design variables by a small engineering team. The designer must walk a line between fidelity and productivity, picking tools and methods with the appropriate balance of characteristics to achieve the goals of the study, while staying within the available resources. Identifying geometric details that are important, and those that are not, is critical to making modeling and methodology choices. This is true for both the low-order analysis methods traditionally used in Conceptual design as well as the highest-order analyses available. This paper will highlight some of Conceptual design's characteristics that drive the designer s choices as well as modeling examples for several aircraft configurations using the open source version of the Vehicle Sketch Pad (Open VSP) aircraft Conceptual design geometry modeler.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2013-0331 , NF1676L-15884 , 51st AIAA Aerospace Sciences Meeting; Jan 07, 2013 - Jan 10, 2013; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-12
    Description: This is the Northrop Grumman final report for the Environmentally Responsible Aviation (ERA) N+2 Advanced Vehicle Study performed for the National Aeronautics and Space Administration (NASA). Northrop Grumman developed advanced vehicle concepts and associated enabling technologies with a high potential for simultaneously achieving significant reductions in emissions, airport area noise, and fuel consumption for transport aircraft entering service in 2025. A Preferred System Concept (PSC) conceptual design has been completed showing a 42% reduction in fuel burn compared to 1998 technology, and noise 75dB below Stage 4 for a 224- passenger, 8,000 nm cruise transport aircraft. Roadmaps have been developed for the necessary technology maturation to support the PSC. A conceptual design for a 55%-scale demonstrator aircraft to reduce development risk for the PSC has been completed.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/CR-2013-218304 , DFRC-E-DAA-TN13313
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-12
    Description: Optimization research at NASA Glenn Research Center has addressed the design of structures, aircraft and airbreathing propulsion engines. The accumulated multidisciplinary design activity is collected under a testbed entitled COMETBOARDS. Several issues were encountered during the solution of the problems. Four issues and the strategies adapted for their resolution are discussed. This is followed by a discussion on analytical methods that is limited to structural design application. An optimization process can lead to an inefficient local solution. This deficiency was encountered during design of an engine component. The limitation was overcome through an augmentation of animation into optimization. Optimum solutions obtained were infeasible for aircraft and airbreathing propulsion engine problems. Alleviation of this deficiency required a cascading of multiple algorithms. Profile optimization of a beam produced an irregular shape. Engineering intuition restored the regular shape for the beam. The solution obtained for a cylindrical shell by a subproblem strategy converged to a design that can be difficult to manufacture. Resolution of this issue remains a challenge. The issues and resolutions are illustrated through a set of problems: Design of an engine component, Synthesis of a subsonic aircraft, Operation optimization of a supersonic engine, Design of a wave-rotor-topping device, Profile optimization of a cantilever beam, and Design of a cylindrical shell. This chapter provides a cursory account of the issues. Cited references provide detailed discussion on the topics. Design of a structure can also be generated by traditional method and the stochastic design concept. Merits and limitations of the three methods (traditional method, optimization method and stochastic concept) are illustrated. In the traditional method, the constraints are manipulated to obtain the design and weight is back calculated. In design optimization, the weight of a structure becomes the merit function with constraints imposed on failure modes and an optimization algorithm is used to generate the solution. Stochastic design concept accounts for uncertainties in loads, material properties, and other parameters and solution is obtained by solving a design optimization problem for a specified reliability. Acceptable solutions can be produced by all the three methods. The variation in the weight calculated by the methods was found to be modest. Some variation was noticed in designs calculated by the methods. The variation may be attributed to structural indeterminacy. It is prudent to develop design by all three methods prior to its fabrication. The traditional design method can be improved when the simplified sensitivities of the behavior constraint is used. Such sensitivity can reduce design calculations and may have a potential to unify the traditional and optimization methods. Weight versus reliability traced out an inverted-S-shaped graph. The center of the graph corresponded to mean valued design. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure. Weight can be reduced to a small value for a most failure-prone design. Probabilistic modeling of load and material properties remained a challenge.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/CR-2013-217748 , E-18529
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-12
    Description: The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-2013-218041 , L-20325 , NF1676L-17391
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-12
    Description: An altitude test facility was modeled using Numerical Propulsion System Simulation (NPSS). This altitude test facility model represents the most detailed facility model developed in the NPSS architecture. The current paper demonstrates the use of the NPSS system to define the required operating range of a component for the facility. A significant number of additional component models were easily developed to complete the model. Discussed in this paper are the additional components developed and what was done in the development of these components.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-2013-217895 , E-18709
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-12
    Description: Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/CR-2013-217820 , PMF-01766 , E-18569
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-12
    Description: A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-12
    Description: A method and apparatus for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: The primary discussion in this paper is about the lessons learned in the loss of the first Hyper-X vehicle and how those problems were overcome.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-E-DAA-TN12595 , Hypersonic Lesson Learned Workshop; Dec 10, 2013; Arlington VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: The structural weight reduction of a pressurized Hybrid Wing-Body (HWB) fuselage is a serious challenge. Hence, research and development are presently being continued at NASA under the Environmentally Responsible Aviation (ERA) and Subsonic Fixed Wing (SFW) projects in collaboration with the Boeing Company, Huntington Beach and Air Force Research Laboratory (AFRL). In this paper, a structural analysis of the HWB fuselage and bulkhead panels is presented, with the objectives of design improvement and structural weight reduction. First, orthotropic plate theories for sizing, and equivalent plate analysis with appropriate simplification are considered. Then parametric finite-element analysis of a fuselage section and bulkhead are conducted using advanced stitched composite structural concepts, which are presently being developed at Boeing for pressurized HWB flight vehicles. With this advanced stiffened-shell design, structural weights are computed and compared to the thick sandwich, vaulted-ribbed-shell, and multi-bubble stiffened-shell structural concepts that had been studied previously. The analytical and numerical results are discussed to assess the overall weight/strength advantages.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2013-1717 , NF1676L-15273 , 54th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics, and Materials Conference; Apr 08, 2013 - Apr 11, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: Multiple metrics are applied to the design of large civil rotorcraft, integrating minimum cost and minimum environmental impact. The design mission is passenger transport with similar range and capacity to a regional jet. Separate aircraft designs are generated for minimum empty weight, fuel burn, and environmental impact. A metric specifically developed for the design of aircraft is employed to evaluate emissions. The designs are generated using the NDARC rotorcraft sizing code, and rotor analysis is performed with the CAMRAD II aeromechanics code. Design and mission parameters such as wing loading, disk loading, and cruise altitude are varied to minimize both cost and environmental impact metrics. This paper presents the results of these parametric sweeps as well as the final aircraft designs.
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN5356 , AIAA Aerospace Sciences Meeting; Jan 07, 2013 - Jan 10, 2013; Fort Worth, TX; Albania
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: Defining specific engine requirements is a critical part of identifying technologies and operational models for potential future rotary wing vehicles. NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project has identified the Large Civil TiltRotor (LCTR) as the configuration to best meet technology goals. This notional vehicle concept has evolved with more clearly defined mission and operational requirements to the LCTR-iteration 2 (LCTR2). This paper reports on efforts to further review and refine the LCTR2 analyses to ascertain specific engine requirements and propulsion sizing criteria. The baseline mission and other design or operational requirements are reviewed. Analysis tools are described to help understand their interactions and underlying assumptions. Various design and operational conditions are presented and explained for their contribution to defining operational and engine requirements. These identified engine requirements are discussed to suggest which are most critical to the engine sizing and operation. The most-critical engine requirements are compared to in-house NASA engine simulations to try to ascertain which operational requirements define engine requirements versus points within the available engine operational capability. Finally, results are summarized with suggestions for future efforts to improve analysis capabilities, and better define and refine mission and operational requirements.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-2013-218101 , E-18816 , AHS International Annual Forum & Technology Display; May 03, 2011 - May 05, 2011; Virginia Beach, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA 2013-4270 , NF1676L-16112 , AIAA Aviation Technology, Integration, and Operations (ATIO) Conference; Aug 12, 2013 - Aug 14, 2013; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: As part of a joint partnership between the NASA Aviation Safety Program (AvSP) and the University of Tennessee Space Institute (UTSI), research on advanced air data calibration methods has been in progress. This research was initiated to expand a novel pitot-static calibration method that was developed to allow rapid in-flight calibration for the NASA Airborne Subscale Transport Aircraft Research (AirSTAR) facility. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. Subscale flight tests demonstrated small 2- error bounds with significant reduction in test time compared to other methods. Recent UTSI full scale flight tests have shown airspeed calibrations with the same accuracy or better as the Federal Aviation Administration (FAA) accepted GPS 'four-leg' method in a smaller test area and in less time. The current research was motivated by the desire to extend this method for inflight calibration of angle of attack (AOA) and angle of sideslip (AOS) flow vanes. An instrumented Piper Saratoga research aircraft from the UTSI was used to collect the flight test data and evaluate flight test maneuvers. Results showed that the output-error approach produces good results for flow vane calibration. In addition, maneuvers for pitot-static and flow vane calibration can be integrated to enable simultaneous and efficient testing of each system.
    Keywords: Aircraft Design, Testing and Performance
    Type: NF1676L-16921 , AIAA Atmospheric Flight Mechanics Conference; Aug 19, 2013 - Aug 22, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-E-DAA-TN10867 , Guidance, Navigation and Control; Aug 18, 2013 - Aug 22, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: This paper presents an approach to shape an aircraft to equivalent area based objectives using the discrete adjoint approach. Equivalent areas can be obtained either using reversed augmented Burgers equation or direct conversion of off-body pressures into equivalent area. Formal coupling with CFD allows computation of sensitivities of equivalent area objectives with respect to aircraft shape parameters. The exactness of the adjoint sensitivities is verified against derivatives obtained using the complex step approach. This methodology has the benefit of using designer-friendly equivalent areas in the shape design of low-boom aircraft. Shape optimization results with equivalent area cost functionals are discussed and further refined using ground loudness based objectives.
    Keywords: Aircraft Design, Testing and Performance
    Type: NF1676L-16631 , AIAA Applied Aerodynamics Conference; Jun 24, 2013 - Jun 27, 2013; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: E-664450 , AIAA Aerospace Sciences Meeting; Jan 07, 2013 - Jan 10, 2013; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-12
    Description: Thermal ice protection systems use heat energy to prevent a dangerous buildup of ice on an aircraft. As aircraft become more efficient, less heat energy is available to operate a thermal ice protections system. This requires that thermal ice protection systems be designed to more exacting standards so as to more efficiently prevent a dangerous ice buildup without adversely affecting aircraft safety. While the effects of altitude have always beeing taked into account in the design of thermal ice protection systems, a better understanding of these effects is needed so as to enable more exact design, testing, and evaluation of these systems.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-2013-216559 , E-18690-1 , AIAA Paper-2013-2934 , GRC-E-DAA-TN8913
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: SPAR International Conference; Apr 14, 2013 - Apr 17, 2013; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: E-664023 , WEZARD SLD Workshop; Jun 11, 2013 - Jun 12, 2013; Brussels; Belgium
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: In this paper, we describe a novel approach in fusing optical flow with inertial cues (3D acceleration and 3D angular velocities) in order to navigate a Micro Aerial Vehicle (MAV) drift free in 4DoF and metric velocity. Our approach only requires two consecutive images with a minimum of three feature matches. It does not require any (point) map nor any type of feature history. Thus it is an inherently failsafe approach that is immune to map and feature-track failures. With these minimal requirements we show in real experiments that the system is able to navigate drift free in all angles including yaw, in one metric position axis, and in 3D metric velocity. Furthermore, it is a power-on-and-go system able to online self-calibrate the inertial biases, the visual scale and the full 6DoF extrinsic transformation parameters between camera and IMU.
    Keywords: Aircraft Design, Testing and Performance
    Type: IEEE/RSJ International Conference on Intelligent Robots and Systems; Nov 03, 2013 - Nov 08, 2013; Tokyo; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: Keck Institute for Space Studies : Airships: A New Horizon for Science; Apr 30, 2013 - May 03, 2013; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: E-664028 , WEZARD SLD Workshop; Jun 11, 2013 - Jun 12, 2013; Brussels; Belgium
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: Motivation: Greenhouse gas concentrations have increased well beyond their pre-industrial levels due to human activities; Aircraft emissions are becoming regulated in industrialized nations, so future rotorcraft will need to be designed for minimal environmental impact. Objectives: Determine suitable metrics to measure environmental impact of rotorcraft, focusing first on air pollution; Integrate performance metrics with rotorcraft design codes; Generate rotorcraft designs with minimal environmental impact. Outcomes: Obtain an understanding of how targeting reduced emissions affects the rotorcraft design process; Advance the capability of existing rotorcraft design tools to include environmental performance metrics. Tools: Evaluation and predesign - NDARC (NASA Design and Analysis of Rotorcraft) and CREATION (Concepts of Rotorcraft Enhanced Assessment Through Integrated Optimization Network); Flight simulation - CAMRAD II (Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics) and HOST (Helicopter Overall Simulation Tool).
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN9508 , US/France MoA Helicopter Aeromechanics Semiannual Meeting; May 28, 2013 - May 29, 2013; Moffet Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: Ida et al. (2005) document significant changes in the multi-fractal parameters of the ULF geomagnetic field H component starting about one month before the 1993 Guam earthquake. According to the authors, these multi-fractal signatures can be considered as precursory signals of the Guam earthquake. As a consequence, they conclude that the multifractal analysis may have an important role in the development of short-term earthquake prediction capabilities. Since this and other similar reports have motivated the idea that earthquake prediction based on electromagnetic precursory signals may one day become a routine technique, the presumed precursors need to be validated through independent datasets. In this review the seismogenic origin of the multifractal magnetic signatures documented by Ida et al. (2005) before the 8 August 1993 Guam earthquake is seriously put into question. By means of the geomagnetic ΣKp index, it is demonstrated that these multi-fractal parameter changes are normal signals induced by the variation of the global geomagnetic activity level.
    Description: Published
    Description: 187-191
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: open
    Keywords: Geomagnetic field ; Magnetic anomalies ; Earthquake precursors ; Seismology ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013
    Description: In this thesis we present results from inversion of data using dense arrays of collocated seismic and magnetotelluric stations located in the Cascadia subduction zone region of central Washington. In the migrated seismic section, we clearly image the top of the slab and oceanic Moho, as well as a velocity increase corresponding to the eclogitization of the hydrated upper crust. A deeper velocity increase is interpreted as the eclogitization of metastable gabbros, assisted by fluids released from the dehydration of upper mantle chlorite. A low velocity feature interpreted as a fluid/melt phase is present above this transition. The serpentinized wedge and continental Moho are also imaged. The magnetotelluric image further constrains the fluid/melt features, showing a rising conductive feature that forms a column up to a conductor indicative of a magma chamber feeding Mt. Rainier. This feature also explains the disruption of the continental Moho found in the migrated image. Exploration of the assumption of smoothness implicit in the standard MT inversion provides tools that enable us to generate a more accurate MT model. This final MT model clearly demonstrates the link between slab derived fluids/melting and the Mt. Rainier magma chamber.
    Description: Funding for this work was made possible by the American Society for Engineering education through a National Defense Science and Engineering Fellowship, and by the National Science Foundation through two grants for the CAFE and CAFE MT projects.
    Keywords: Seismic networks ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-06-09
    Description: In the frame of the Italian research project INGV-DPC S2 (http://nuovoprogettoesse2.stru.polimi.it/), funded by the Dipartimento della Protezione Civile (DPC; National Civil Protection Department) within the agreement 2007-2009, a tool for probabilistic seismic hazard assessment (PSHA) was developed. The main goal of the project was to provide a flexible computational tool for PSHA; the requirements considered essential for the success of the project included: •ability to handle both stationary and non-stationary earthquake time-occurrence models; •ability to use ground-motion prediction models that are not parametric equations but probabilistic "footprints" of the intensities generated by earthquakes of known magnitude and focal characteristics. Usually, these footprints are results of ground motion simulations. Some commonly used programs (e.g., FRISK, by McGuire, 1978; SEISRISK III, by Bender and Perkins, 1987) and more recent and state-of-the-art tools (e.g. OpenSHA, by Field et al., 2003, http://www.opensha.org; OpenQuake, http://openquake.org) for PSHA were analyzed. It was decided to focus on CRISIS2007, which was already a mature and well known application (e.g., Kalyan Kumar and Dodagoudar, 2011; Teraphan et al., 2011; D’Amico et al., 2012; see also http://ecapra.org/CRISIS-2007), but also suitable for additional development and evolution since its source code is freely available on request. The computational tool resulted in an extensive redesign and renovation of the previous CRISIS2007 version. CRISIS is a computer program for PSHA, originally developed in the late 1980's using Fortran as programming language (Ordaz, 1991). In this format, still without a graphical user interface (GUI), it was distributed as part of SEISAN tools (Ottemöller et al., 2011). Ten years later, a GUI was constructed, generating what was called CRISIS99 (Ordaz, 1999). In this version, all the graphic features were written in Visual Basic, but the computation engine remained a Fortran dynamic link library. The reason for the use of mixed-language programming was that computations in Visual Basic were extremely slow. Around 2007 the program was upgraded, in view of the advantages offered by the object-oriented technologies. An object-oriented programming language was required and the natural choice was Visual Basic.Net. In the new version (called CRISIS2007), both the GUI and the computation engine were written in the same language. Finally, in the frame of the mentioned S2 project, starting from 2008, the program was split into two logical layers: core (CRISIS Core Library) and presentation (CRISIS2008). In addition, a new presentation layer was developed for accessing the same functionalities via Web (CRISISWeb). It is worth noting that CRISIS has been mainly written by people that are, at the same time, PSHA practitioners. Therefore, the development loop has been relatively short, and most of the modifications and improvements have been made to satisfy the needs of the developers themselves.
    Description: Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: 495-504
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic Hazard ; Seismology ; Probabilistic Seismic Hazard Assesment ; PSHA ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...