ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics  (17,811)
  • American Geophysical Union
  • 2020-2023
  • 2010-2014  (24,397)
  • 2013  (24,397)
Collection
Years
  • 2020-2023
  • 2010-2014  (24,397)
Year
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 1990. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 95, no. B11 (1990): 17555–17569, doi:10.1029/JB095iB11p17555.
    Description: The Comer seamounts in the western North Atlantic and Great Meteor seamount “chain” in the eastern North Atlantic are thought to progress in age from Late Cretaceous through late Cenozoic. They both presumably formed by volcanism above the New England hotspot when first the North American plate, and then the Mid-Atlantic Ridge axis and African plate, moved over the hotspot. High-resolution, multibeam bathymetry of the seamounts shows geomorphic features such as guyots, terraces, and a base level plateau (Cruiser plateau) that we interpret to have formed at sea level. We have backtracked these features to sea level along the North Atlantic crustal age-depth curve in order to estimate their ages. The derived age pattern of volcanism indicates formation of the Comer seamounts at ca. 80 Ma to 76 Ma, with migration of the Mid-Atlantic Ridge plate boundary over the hotspot and formation of the Cruiser plateau about 76 Ma. Seamount ages suggest that subsequent volcanism on the African plate moved first northward, in the Late Cretaceous to early Cenozoic (Plato, Tyro, and Atlantis seamount groups), then southward to Great Meteor Seamount in the late Cenozoic. Recurrent volcanism appears to have occurred at some seamounts up to 20–30 m.y. after their initial passage over the hotspot. It would thus appear that intralithospheric conduits can link the hotspot to old seamounts several hundred kilometers away.
    Description: This work was supported in part by ONR Contract N00014-82-C-0019 to B. Tucholke at Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q0AF07, doi:10.1029/2012GC004211.
    Description: The output of gas and tephra from volcanoes is an inherently disorganized process that makes reliable flux estimates challenging to obtain. Continuous monitoring of gas flux has been achieved in only a few instances at subaerial volcanoes, but never for submarine volcanoes. Here we use the first sustained (yearlong) hydroacoustic monitoring of an erupting submarine volcano (NW Rota-1, Mariana arc) to make calculations of explosive gas flux from a volcano into the ocean. Bursts of Strombolian explosive degassing at the volcano summit (520 m deep) occurred at 1–2 min intervals during the entire 12-month hydrophone record and commonly exhibited cyclic step-function changes between high and low intensity. Total gas flux calculated from the hydroacoustic record is 5.4 ± 0.6 Tg a−1, where the magmatic gases driving eruptions at NW Rota-1 are primarily H2O, SO2, and CO2. Instantaneous fluxes varied by a factor of ∼100 over the deployment. Using melt inclusion information to estimate the concentration of CO2 in the explosive gases as 6.9 ± 0.7 wt %, we calculate an annual CO2 eruption flux of 0.4 ± 0.1 Tg a−1. This result is within the range of measured CO2 fluxes at continuously erupting subaerial volcanoes, and represents ∼0.2–0.6% of the annual estimated output of CO2from all subaerial arc volcanoes, and ∼0.4–0.6% of the mid-ocean ridge flux. The multiyear eruptive history of NW Rota-1 demonstrates that submarine volcanoes can be significant and sustained sources of CO2 to the shallow ocean.
    Description: The National Oceanic and Atmospheric Administration Office of Ocean Exploration and Research, the NOAA Vents Program, and the National Science Foundation (OCE-0751776) for support.
    Description: 2013-05-29
    Keywords: Gas flux ; Ocean acoustics ; Seafloor volcanism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 50 (2012): RG4003, doi:10.1029/2012RG000389.
    Description: The most important sources of atmospheric moisture at the global scale are herein identified, both oceanic and terrestrial, and a characterization is made of how continental regions are influenced by water from different moisture source regions. The methods used to establish source-sink relationships of atmospheric water vapor are reviewed, and the advantages and caveats associated with each technique are discussed. The methods described include analytical and box models, numerical water vapor tracers, and physical water vapor tracers (isotopes). In particular, consideration is given to the wide range of recently developed Lagrangian techniques suitable both for evaluating the origin of water that falls during extreme precipitation events and for establishing climatologies of moisture source-sink relationships. As far as oceanic sources are concerned, the important role of the subtropical northern Atlantic Ocean provides moisture for precipitation to the largest continental area, extending from Mexico to parts of Eurasia, and even to the South American continent during the Northern Hemisphere winter. In contrast, the influence of the southern Indian Ocean and North Pacific Ocean sources extends only over smaller continental areas. The South Pacific and the Indian Ocean represent the principal source of moisture for both Australia and Indonesia. Some landmasses only receive moisture from the evaporation that occurs in the same hemisphere (e.g., northern Europe and eastern North America), while others receive moisture from both hemispheres with large seasonal variations (e.g., northern South America). The monsoonal regimes in India, tropical Africa, and North America are provided with moisture from a large number of regions, highlighting the complexities of the global patterns of precipitation. Some very important contributions are also seen from relatively small areas of ocean, such as the Mediterranean Basin (important for Europe and North Africa) and the Red Sea, which provides water for a large area between the Gulf of Guinea and Indochina (summer) and between the African Great Lakes and Asia (winter). The geographical regions of Eurasia, North and South America, and Africa, and also the internationally important basins of the Mississippi, Amazon, Congo, and Yangtze Rivers, are also considered, as is the importance of terrestrial sources in monsoonal regimes. The role of atmospheric rivers, and particularly their relationship with extreme events, is discussed. Droughts can be caused by the reduced supply of water vapor from oceanic moisture source regions. Some of the implications of climate change for the hydrological cycle are also reviewed, including changes in water vapor concentrations, precipitation, soil moisture, and aridity. It is important to achieve a combined diagnosis of moisture sources using all available information, including stable water isotope measurements. A summary is given of the major research questions that remain unanswered, including (1) the lack of a full understanding of how moisture sources influence precipitation isotopes; (2) the stationarity of moisture sources over long periods; (3) the way in which possible changes in intensity (where evaporation exceeds precipitation to a greater of lesser degree), and the locations of the sources, (could) affect the distribution of continental precipitation in a changing climate; and (4) the role played by the main modes of climate variability, such as the North Atlantic Oscillation or the El Niño–Southern Oscillation, in the variability of the moisture source regions, as well as a full evaluation of the moisture transported by low-level jets and atmospheric rivers.
    Description: Luis Gimeno would like to thank the Spanish Ministry of Science and FEDER for their partial funding of this research through the project MSM. A. Stohl was supported by the Norwegian Research Council within the framework of the WATER‐SIP project. The work of Ricardo Trigo was partially supported by the FCT (Portugal) through the ENAC project (PTDC/AAC-CLI/103567/2008).
    Description: 2013-05-08
    Keywords: Hydrological cycle ; Ocean evaporation ; Precipitation ; Sources of moisture ; Terrestrial evaporation ; Transport of moisture
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 26 (2012): GB4018, doi:10.1029/2011GB004192.
    Description: A series of seasonally distributed measurements from the six largest Arctic rivers (the Ob', Yenisey, Lena, Kolyma, Yukon and Mackenzie) was used to examine the magnitude and significance of Arctic riverine DIC flux to larger scale C dynamics within the Arctic system. DIC concentration showed considerable, and synchronous, seasonal variation across these six large Arctic rivers, which have an estimated combined annual DIC flux of 30 Tg C yr−1. By examining the relationship between DIC flux and landscape variables known to regulate riverine DIC, we extrapolate to a DIC flux of 57 ± 9.9 Tg C yr−1for the full pan-arctic basin, and show that DIC export increases with runoff, the extent of carbonate rocks and glacial coverage, but decreases with permafrost extent. This pan-arctic riverine DIC estimate represents 13–15% of the total global DIC flux. The annual flux of selected ions (HCO3−, Na+, Ca2+, Mg2+, Sr2+, and Cl−) from the six largest Arctic rivers confirms that chemical weathering is dominated by inputs from carbonate rocks in the North American watersheds, but points to a more important role for silicate rocks in Siberian watersheds. In the coastal ocean, river water-induced decreases in aragonite saturation (i.e., an ocean acidification effect) appears to be much more pronounced in Siberia than in the North American Arctic, and stronger in the winter and spring than in the late summer. Accounting for seasonal variation in the flux of DIC and other major ions gives a much clearer understanding of the importance of riverine DIC within the broader pan-arctic C cycle.
    Description: Funding for this work was provided through NSF-OPP-0229302 and NSF-OPP-0732985. Additional support to SET was provided by an NSERC Postdoctoral Fellowship.
    Description: 2013-06-14
    Keywords: Arctic ; Dissolved inorganic carbon ; Ocean acidification ; Permafrost ; River biogeochemistry ; Weathering
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2000. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 105, no. B2 (2000): 2721-2736, doi:10.1029/1999JB900253.
    Description: Using multibeam bathymetry, we identified 86 axial and 1290 off-axis seamounts (near-circular volcanoes with heights ≥70 m) in an area of 75,000 km2 on the western flank of the Mid-Atlantic Ridge (MAR), 25°25′N to 27°10′N, extending ∼400 km from the inner rift valley floor to ∼29 Ma crust. Our study shows that seamounts are a common morphological feature of the North Atlantic seafloor. Seamount-producing volcanism occurs primarily on the inner rift valley floor, and few, if any, seamounts are formed on the rift valley walls or the ridge flank. The high abundance of off-axis seamounts is consistent with 1–3 km wide sections of oceanic crust being transferred intact from the axial valley to the ridge flank on crust 〉4 Ma. Significant changes in seamount abundances, sizes, and shapes are attributed to the effects of faulting between ∼0.6 and 2 m.y. off axis in the lower rift valley walls. Few seamounts are completely destroyed by (inward facing) faults, and population abundances are similar to those on axis. However, faulting reduces the characteristic height of the seamount population significantly. In the upper portions of the rift valley, on 2–4 Ma crust, crustal aging processes (sedimentation and mass wasting), together with additional outward facing faults, destroy and degrade a significant number of seamounts. Beyond the crest of the rift mountains (〉4 Ma crust) faulting is no longer active, and changes in the off-axis seamount population reflect crustal aging processes as well as temporal changes in seamount production that occurred at the ridge axis. Estimates of population density for off-axis seamounts show a positive correlation to crustal thickness inferred from analysis of gravity data, suggesting that increased seamount production accompanies increased magma input at the ridge axis. We find no systematic variations in seamount population density along isochron within individual ridge segments. Possible explanations are that along-axis production of seamounts is uniform or that seamount production is enhanced in some regions (e.g., segment centers), but many seamounts do not meet our counting criteria because they are masked by younger volcanic eruptions and low-relief flows.
    Description: This research was supported by ONR grants N00014-93-1- 1153(AASERT),N 00014-94-1-0319N, 00014-94-1-0466 and N00014- 90-J-1621. B. E. Tucholke was also supported by NSF grant OCE 95- 03561.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C12007, doi:10.1029/2012JC008340.
    Description: We present observations and simulations of large-scale velocity structures associated with turbulent boundary layer dynamics of a coastal ocean. Special purpose acoustic Doppler current profiler measurements revealed that such structures were frequently present, in spite of complex coastal environmental conditions. Large eddy simulation results are only consistent with these observations if the Langmuir circulation (LC) effect due to wave-current interaction is included in the model. Thus, model results indicate that the observed large-scale velocity structures are due to LC. Based on these simulations, we examine the shift of energetics and transport from a local regime for purely shear-driven turbulence to a nonlocal regime for turbulence with LC due to coherent large-scale motions that span the whole water column. Without LC, turbulent kinetic energy (TKE) dissipation rates approximately balance TKE shear production, consistent with solid wall boundary layer turbulence. This stands in contrast to the LC case for which the vertical TKE transport plays a dominant role in the TKE balance. Conditional averages argue that large-scale LC coherent velocity structures extract only a small fraction of energy from the wavefield but receive most of their energy input from the Eulerian shear. The analysis of scalar fields and Lagrangian particles demonstrates that the vertical transport is significantly enhanced with LC but that small-scale mixing may be reduced. In the presence of LC, vertical scalar fluxes may be up gradient, violating a common assumption in oceanic boundary layer turbulence parameterizations.
    Description: This work was supported by the U.S. National Science Foundation (Grant OCE-1130678). CBLAST-Low analysis was supported by the Office of Naval Research under grants N00014-03-1- 0681 and N00014-06-1-0178 to the Woods Hole Oceanographic Institution. Author T.K. received support from Faculty Startup Funds of the School of Marine Science and Policy, University of Delaware.
    Description: 2013-06-11
    Keywords: Langmuir circulation ; Boundary layer dynamics ; Coastal transport ; Large eddy simulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 1997. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 102, no. B7 (1997): 15447–15462, doi:10.1029/97JB00723.
    Description: The results of a multiscale spectral analysis of bathymetric data on the flank of the Mid-Atlantic Ridge are described. Data were collected during two cruises using Hydrosweep multibeam (tens of kilometers to ∼0.2 km scale range) and Mesotech scanning pencil-beam sonar attached to remotely operated vehicle Jason (∼1 km to ∼0.5 m scale range). These data are augmented by visual data which enabled us to identify bathymetric profiles which are over unsedimented or thinly sedimented crust. Our analysis, therefore, is focused primarily on statistical characterization of basement morphology. Work is concentrated at two sites: site B on ∼24 Ma crust in an outside-corner setting, and site D on ∼3 Ma crust in an inside-corner setting. At site B we find that an anisotropic, band-limited fractal model (i.e., the “von Kármán” model proposed for abyssal hill morphology by Goff and Jordan [1988]) is not sufficient to describe the full range of scales observed in this study. Our observations differ from this model in two ways: (1) strike and cross-strike (dip) spectral properties converge for wavelengths smaller than ∼300 m, and (2) in both strike and dip directions the fractal dimension changes at ∼10 m wavelength, from ∼1.27 at larger scales to ∼1.0 at smaller scales. The convergence of strike and dip spectral properties appears to be associated with destruction of ridge-parallel fault scarps by mass wasting, which develops canyon-like incisions that cross scarps at high angles. The change in fractal dimension at ∼10 m scale appears to be related to a minimum spacing of significant slope breaks associated with scarps which are created by faulting and mass wasting. At site D, although there is no significant abyssal hill anisotropy, the spectral properties at all scales are consistent with the von Kármán model. The fractal dimension at this site (∼1.15) is less than at site B. This difference may be reflect different morphology related to crustal formation at inside-corner versus outside-corner position or, more likely, differences in the degree of mass wasting. The smoothing of seafloor morphology by sediments is evident in Hydrosweep periodograms where, relative to basement roughness, spectral power decreases progressively with decreasing wavelength.
    Description: This work was supported under ONR grants N00014-94-1-0197 and N00014-96-1-0462 (J.A.G.) and N00014-90-J-1621 and N00014-94-1-0466 (B.E.T.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 27 (2012): PA3227, doi:10.1029/2012PA002335.
    Description: The rate of uranium accumulation in oceanic sediments from seawater is controlled by bottom water oxygen concentrations and organic carbon fluxes—two parameters that are linked to deep ocean storage of CO2. To investigate glacial-interglacial changes in what is known as authigenic U, we have developed a rapid method for its determination as a simple addition to a procedure for foraminiferal trace element analysis. Foraminiferal calcite acts as a low U substrate (U/Ca 〈 15 nmol/mol) upon which authigenic U accumulates in reducing sediments. We measured a downcore record of foraminiferal U/Ca from ODP Site 1090 in the South Atlantic and found that U/Ca ratios increase by 70–320 nmol/mol during glacial intervals. There is a significant correlation between U/Ca records of benthic and planktonic foraminiferal species and between U/Ca and bulk sediment authigenic U. These results indicate that elevated U/Ca ratios are attributable to the accumulation of authigenic U coatings in sediments. Foraminiferal Mn/Ca ratios were lower during the glacial intervals, suggesting that the observed U accumulation on the shells is not directly linked to U incorporation into secondary manganese phases. Thus, foraminiferal U/Ca ratios may provide useful information on past changes in sediment redox conditions.
    Description: R.B. was funded by the Winston Churchill Foundation, and H.E. was funded by the UK Natural Environment Research Council and the European Research Council.
    Description: 2013-03-08
    Keywords: South Atlantic ; U/Ca ; Authigenic uranium ; Foraminifera ; Glacial cycles ; Redox paleo-proxy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 4 (2003): 1024, doi:10.1029/2002GC000364.
    Description: The Mid-Atlantic Ridge around the Fifteen-Twenty Fracture Zone is unique in that outcrops of lower crust and mantle rocks are extensive on both flanks of the axial valley walls over an unusually long distance along-axis, indicating a high ratio of tectonic to magmatic extension. On the basis of newly collected multibeam bathymetry, magnetic, and gravity data, we investigate crustal evolution of this unique section of the Mid-Atlantic Ridge over the last 5 Ma. The northern and southern edges of the study area, away from the fracture zone, contain long abyssal hills with small spacing and fault throw, well lineated and high-amplitude magnetic signals, and residual mantle Bouguer anomaly (RMBA) lows, all of which suggest relatively robust magmatic extension. In contrast, crust in two ridge segments immediately north of the fracture zone and two immediately to the south is characterized by rugged and blocky topography, by low-amplitude and discontinuous magnetization stripes, and by RMBA highs that imply thin crust throughout the last 5 Ma. Over these segments, morphology is typically asymmetric across the spreading axis, indicating significant tectonic thinning of crust caused by faults that have persistently dipped in only one direction. North of the fracture zone, however, megamullions are that thought to have formed by slip on long-lived normal faults are found on both ridge flanks at different ages and within the same spreading segment. This unusual partitioning of megamullions can be explained either by a ridge jump or by polarity reversal of the detachment fault following formation of the first megamullion.
    Description: This work was completed while T. Fujiwara was a Guest Investigator at Woods Hole Oceanographic Institution with funding from Japan Marine Science and Technology Center (JAMSTEC), National Science Foundation, and the JAMSTEC Research Overseas Program. J. Lin’s contributions to this research were supported by NSF Grant OCE-9811924. B. E. Tucholke’s contributions were supported by NSF Grant OCE-9503561 and by the Andrew W. Mellon Endowment Fund for Innovative Research and the Henry Bryant Bigelow Chair at Woods Hole Oceanographic Institution.
    Keywords: Fifteen-twenty fracture zone ; Morphology ; Magnetic anomaly ; Gravity anomaly ; Megamullion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 1998. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 103, No. B8 (1998): 17807–17826, doi:10.1029/98JB01394.
    Description: A sea-surface magnetic survey over the west flank of the Mid-Atlantic Ridge from 0 to 29 Ma crust encompasses several spreading segments and documents the evolution of crustal magnetization in slowly accreted crust. We find that magnetization decays rapidly within the first few million years, although the filtering effect of water depth on the sea-surface data and the slow spreading rate (〈13 km/m.y.) preclude us from resolving this decay rate. A distinctly asymmetric, along-axis pattern of crustal magnetization is rapidly attenuated off-axis, suggesting that magnetization dominated by extrusive lavas on-axis is reduced off-axis to a background value. Off-axis, we find a statistically significant correlation between crustal magnetization and apparent crustal thickness with thin crust tending to be more positively magnetized than thicker crust, indicative of induced magnetization in thin inside corner (IC) crust. In general, we find that off-axis segment ends show an induced magnetization component regardless of polarity and that IC segment ends tend to have slightly more induced component compared with outside corner (OC) segment ends, possibly due to serpentinized uppermost mantle at IC ends. We find that remanent magnetization is also reduced at segment ends, but there is no correlation with inside or outside corner crust, even though they have very different crustal thicknesses. This indicates that remanent magnetization off-axis is independent of crustal thickness, bulk composition, and the presence or absence of extrusives. Remanence reduction at segment ends is thought to be primarily due to alteration of lower crust in OC crust and a combination of crustal thinning and alteration in IC crust. From all these observations, we infer that the remanent magnetization of extrusive crust is strongly attenuated off-axis, and that magnetization of the lower crust may be the dominant source for off-axis magnetic anomalies.
    Description: M. Tivey was supported by ONR grant N00014-94-1-0467 and NSF grant OCE-9200905 and B. Tucholke was supported by ONR grant N00014-94-1-0466 and NSF grant OCE-9503561. Data were collected under ONR grant N00014-90-JI612.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...