ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous  (9)
  • 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
  • Elsevier Science Limited  (4)
  • American Geophysical Union  (3)
  • Nature Publishing Group  (1)
  • Springer Berlin Heidelberg  (1)
  • 2010-2014  (9)
  • 2014  (8)
  • 2013  (1)
Collection
Keywords
Years
  • 2010-2014  (9)
Year
  • 1
    Publication Date: 2017-04-04
    Description: The 2011 submarine eruption that took place in the proximity of El Hierro Island (Canary Islands, Spain) has raised the need to identify the most likely future emission zones even on volcanoes characterized by low frequency activity. Here, we propose a probabilistic method to build the susceptibility map of El Hierro, i.e. the spatial distribution of vent opening for future eruptions, based on the probabilistic analysis of volcano-structural data of the Island collected through newfieldworkmeasurements, bathymetric information, as well as analysis of geological maps, orthophotos and aerial photographs. These data have been divided into different datasets and converted into separate and weighted probability density functions, which were included in a non-homogeneous Poisson process to produce the volcanic susceptibility map. The most likely area to host new eruptions in El Hierro is in the south-western part of the West rift. High probability locations are also found in the Northeast and South rifts, and along the submarine parts of the rifts. This map represents the first effort to deal with the volcanic hazard at El Hierro and can be a support tool for decision makers in land planning, emergency measures and civil defense actions.
    Description: This work has been partially funded by the Spanish Geological Survey (IGME) through the MODEX Project (directed by Luis Laín) and a Research Grant for LB, and the Research grant program “Innova Canarias 2020®” from the “Fundación Universitaria de Las Palmas”.
    Description: Published
    Description: 21-30
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Susceptibility ; Volcanic hazard ; Eruptive vent ; Volcano-tectonics ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The 1669 AD flank eruption was the most destructive event on Etna volcano in historical times (~700 BC) and provided, because of the presence of numerous quarries and subsurface data, the opportunity for a unique case study in which we directly measured the thickness of the lava field. Moreover, analysis of historical documents allowed reconstruction of the temporal evolution of the lava field and estimation of the average effusion rate. One hundred and thirty eight thickness measurements, acquired from field surveys and subsurface data, allowed us to divide the lava field into twelve zones of homogenous mean thickness and to calculate a total lava volume of (607 ± 105) × 106 m3, corresponding to an average effusion rate of 58 ± 10 m3/s. This new volume differs by −24% up to +64%, from previously published values. The temporal evolution of the cumulative volume and average effusion rate were reconstructed for the first fourteen days, from field data and analysis of historical records. A short initial phase was characterized by a rapid increase in effusion rate, which reached a peak of ~640 m3/s after three days. This was followed by a longer phase in which the flow rate decreased. The first fourteen days were crucial for the development of the lava field, and in this time it covered 72% of its final area and produced most of the damage. Thereafter, the growth of a complex lava tube network promoted lava field lengthening to the city of Catania, 17 km away from the vent. Effusion rate trends like those of the 1669 eruption can be adopted for future investigations aimed at assessing the effects of similar events on Etna’s most highly urbanized area and at other effusive basaltic volcanoes.
    Description: Published
    Description: 694
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Mount Etna, 1669, Lava flow field, Lava volume, effusion rate trend ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The statistical analysis of volcanic activity at Mt Etna was conducted with the twofold aim of (1) constructing a probability map for vent opening of future flank eruptions and (2) forecasting the expected number of eruptive events at the summit craters. The spatiotemporal map of new vent opening at Etna volcano is based on the analysis of spatial locations and frequency of flank eruptions starting from 1610. Thanks to the completeness and accuracy of historical data over the last four centuries, we examined in detail the spatial and temporal distribution of flank eruptions showing that effusive events follow a nonhomogenous Poisson process with space-time varying intensities. After demonstrating the spatial nonhomogeneity and the temporal nonstationarity of flank eruptions at Etna, we calculated the recurrence rates (events expected per unit area per unit time) and produced different spatiotemporal probability maps of new vent opening in the next 1, 10 and 50 years. These probabilistic maps have an immediate use in evaluating the future timing and areas of Etna prone to volcanic hazards. Finally, the results of the analysis of the persistent summit activity during the last 110 years indicate that the hazard rate for eruptive events is not constant with time, differs for each summit crater of Mt Etna, highlighting a general increase in the eruptive frequency starting from the middle of last century and particularly from 1971, when the SE crater was formed.
    Description: This work was developed in the frame of the TecnoLab, the Laboratory for the Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 1925-1935
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; probabilistic modeling ; eruption ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Improving lava flow hazard assessment is one of the most important and challenging fields of volcanology, and has an immediate and practical impact on society. Here, we present a methodology for the quantitative assessment of lava flow hazards based on a combination of field data, numerical simulations and probability analyses. With the extensive data available on historic eruptions of Mt. Etna, going back over 2000 years, it has been possible to construct two hazard maps, one for flank and the other for summit eruptions, allowing a quantitative analysis of the most likely future courses of lava flows. The effective use of hazard maps of Etna may help in minimizing the damage from volcanic eruptions through correct land use in densely urbanized area with a population of almost one million people. Although this study was conducted on Mt. Etna, the approach used is designed to be applicable to other volcanic areas.
    Description: This work was developed within the framework of TecnoLab, the Laboratory for Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 3493
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Lava flow hazard ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Flank instability at basaltic volcanoes is often related to repeated dike intrusions along rift zones and accompanied by surface fracturing and seismicity. These processes have been mostly studied during specific events, and the lack of longer-term observations hinders their better understanding. Here we analyze ~20 years of deformation of the Pernicana Fault System (PFS), the key structure controlling the instability of the eastern flank of Mt. Etna. We exploit East-West and vertical components of mean deformation velocity, as well as corresponding time series, computed from ERS/ENVISAT (1992–2010) and COSMO-SkyMed (2009–2011) satellite radar sensors via Synthetic Aperture Radar Interferometry techniques. We then integrate and compare this information with field, seismic, and leveling data, collected between 1980 and 2012. We observe transient displacements accompanied by seismicity, overprinted on a long-term background eastward motion (~2 cm/yr). In the last decades, these transient events were preceded by a constant amount of accumulated strain near the PFS. The time of strain accumulation varies between a few years and a few decades, also depending on magma emplacement within the nearby North East Rift, which may increase the strain along the PFS. These results suggest that the amount of deformation near the PFS may be used as a gauge to forecast the occurrence of instability transients on the eastern flank of Etna. In this context, the PFS may provide an ideal, small-scale structure to test the relations between strain accumulation, stress loading, and seismic energy release.
    Description: This work has been partially supported by the Italian Space Agency (ASI) within the SAR4Volcanoes project, agreement I/ 034/11/0.
    Description: Published
    Description: 4398-4409
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: Volcano flank instability ; Pernicana fault ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Volcanic eruptions are often accompanied by spatiotemporal migration of ground deformation, a consequence of pressure changes within magma reservoirs and pathways. We modeled the propagation of pressure variations through the east rift zone (ERZ) of K" ılauea Volcano, Hawai‘i, caused by magma " o-Kupaianaha withdrawal during the early eruptive episodes (1983–1985) of the ongoing Pu‘u ‘ O‘" " eruption. Eruptive activity at the Pu‘u ‘ O‘" o vent was typically accompanied by abrupt deflation that lasted for several hours and was followed by a sudden onset of gradual inflation once the eruptive episode had ended. Similar patterns of deflation and inflation were recorded at K" ılauea’s summit, approximately 15 km to the northwest, albeit with time delays of hours. These delay times can be reproduced by modeling the spatiotemporal changes in magma pressure and flow rate within an elastic-walled dike that traverses K" ılauea’s ERZ. Key parameters that affect the behavior of the magma-dike system are the dike dimensions, the elasticity of the wall rock, the magma viscosity, and to a lesser degree the magnitude and duration of the pressure variations themselves. Combinations of these parameters define a transport efficiency and a pressure diffusivity, which vary somewhat from episode to episode, resulting in variations in delay times. The observed variations in transport efficiency are most easily explained by small, localized changes to the geometry of the magma pathway
    Description: Published
    Description: 2232–2246
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: magma flow ; dikes ; Kilauea ; elastic rock ; magma-rock coupling ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Between January 2011 and April 2012, the Southeast Crater (SEC) on Mount Etna was the site of 25 episodes of lava fountaining, which led to the construction of a new pyroclastic cone on the eastern flank of the SEC. During these episodes lava overflows reached 4.3 km in length with an area of 3.19 km2 and a volume of 28 x 106 m3. The new cone, informally called New Southeast Crater (NSEC), grew over a pre-existing subsidence depression (pit crater), which had been formed in 2007-2009. The evolution of the NSEC cone was documented from its start by repeated GPS surveys carried out both from a distance and on the cone itself, and by the acquisition of comparison photographs. These surveys reveal that after the cessation of the lava fountains in April 2012, the highest point of the NSEC stood 190 m above the pre-cone surface, while the cone volume was about 19 x 106 m3, representing 38 % of the total (bulk) volume of the volcanic products including pyroclastic fallout erupted in 2011-2012, which is 50 x 106 m3 (about 33 x 106 m3 dense-rock equivalent). Growth of the new cone took place exclusively during the paroxysmal phases of the lava fountaining episodes, which were nearly always rather brief (on the average 2 hours). Overall, the paroxysmal phases of all 25 episodes represent 51 hours of lava fountaining activity – the time needed to build the cone. This is the fastest documented growth of a newborn volcanic cone both in terms of volume and height. Mean effusion rates during the lava fountaining episodes on 20 August 2011 (E11), as well as 12 and 24 April 2012 (E24 and E25) exceeded 500 m3/s (with maximum rates of 980 m3/s during E11) and thus they are among the highest effusion rates ever recorded at Etna. The composition of the erupted products varies in time, reflecting different rates of magma supply into the shallow feeding system, but without notable effects on the eruptive phenomenology. This implies that the dynamics leading to the episodic lava fountaining was largely, though not entirely, controlled by the repeated formation and collapse of a foam layer in the uppermost portion of the magmatic reservoir of the NSEC.
    Description: Published
    Description: 10-21
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Etna, summit eruptions; scoria cone growth; lava and tephra volume; collapsing foam model ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-24
    Description: The Aeolian Arc (Southern Tyrrhenian Sea, Italy) is one of the most active volcanic areas of the Mediterranean basin, affected by volcanic/hydrothermal and seismic activity. Ancient populations settled this region since historical times, building coastal installations which currently are valuable archaeological indicators of relative sea level changes and vertical land movements. In this study we show and discuss data on the relative sea level change estimated from a submerged wharf of Roman age dated between 50 B.C. and 50 A.D., located at Basiluzzo Island. This structure has been studied through marine surveys and archaeological interpretations and is presently located at a corrected depth of 4.10 0.2 m. We explain this submergence by a cumulative effect of the relative sea level change caused by the regional glaciohydro- isostatic signal, active since the end of the last glacial maximum, and the local volcano-tectonic land subsidence. Finally, a total subsidence rate of 2.05 0.1 mm/yr 1, with a volcano-tectonic contribution of 1.43 0.1 mm/yr 1 for the last 2 ka BP, is inferred from the comparison against the latest predicted sea level curve for the Southern Tyrrhenian Sea, suggesting new evaluations of the volcanotectonic hazard for this area of the Aeolian islands.
    Description: Published
    Description: 143-150
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: open
    Keywords: Aeolian islands, sea level, crustal deformations ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Archaeological and volcanological studies conducted in the Naples area have revealed that numerous high-intensity explosive eruptions that occurred in the past 10 ka caused damage and victims in the human communities living in the plain surrounding the Neapolitan volcanoes. These catastrophic events were interspersed by hundred to thousand year long periods of quiescence, usually exceeding a human life-time. During the Early Bronze Age in particular, the Campania Plain was densely inhabited due to favourable climatic conditions and soil fertility. The archaeological and volcanological investigation of the sequences found in archaeological excavations has permitted the detailed reconstruction of the effects of eruptions and deposition mechanisms of their products on settlements. This paper discusses the example of Nola- Palma Campania during a most interesting, though poorly known, period of activity bracketed by the Vesuvian Pomici di Avellino (Early Bronze Age) and Pollena (AD 472) Plinian eruptions. Through this timespan the Plainwas variably inhabited, crossed by long-lived roads and subject to agricultural exploitation. Eruptions caused significant breaks in the occupation of the area, but also maintained the plain’s extraordinary fertility. During this period, at least eight other eruptions occurred: the Pomici di Pompei Plinian event (AD 79), two sub-Plinian to phreato-Plinian events, and five violent Strombolian to Vulcanian events. Thin and poorly developed to thicker and mature palaeosols or erosional unconformities separate the various pyroclastic deposits. Almost all the eruptions and related phenomena interacted with human settlements in the Campania Plain, and in their sequences many traces of the displacement of people during the eruptions may be seen, as well as land reclamation and re-utilization soon afterwards. Despite the various kinds of hazard posed by volcanic and related phenomena, humans nevertheless found good reasons for settlement in the Campania Plain and flourished there. A multidisciplinary approach has yielded detailed information regarding the evolution of the area and the effects of eruptions on settlements. These data are of paramount importance for an improved understanding of past events and in evaluating the hazard of eruptions and related phenomena.
    Description: Published
    Description: 132-141
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: stratigrafy ; volcanology ; archaeology ; volcanic hazard ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...