ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meridional overturning circulation  (2)
  • American Meteorological Society  (2)
  • Blackwell Publishing Ltd
  • Hindawi
  • Institute of Electrical and Electronics Engineers
  • Molecular Diversity Preservation International
  • Springer Nature
  • Springer Science + Business Media
  • 2020-2022
  • 2010-2014  (2)
  • 1985-1989
  • 1960-1964
  • 2012  (2)
Collection
Publisher
  • American Meteorological Society  (2)
  • Blackwell Publishing Ltd
  • Hindawi
  • Institute of Electrical and Electronics Engineers
  • Molecular Diversity Preservation International
  • +
Years
  • 2020-2022
  • 2010-2014  (2)
  • 1985-1989
  • 1960-1964
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 5153–5172, doi:10.1175/JCLI-D-11-00463.1.
    Description: Atlantic meridional overturning circulation (AMOC) variability is documented in the Community Climate System Model, version 4 (CCSM4) preindustrial control simulation that uses nominal 1° horizontal resolution in all its components. AMOC shows a broad spectrum of low-frequency variability covering the 50–200-yr range, contrasting sharply with the multidecadal variability seen in the T85 × 1 resolution CCSM3 present-day control simulation. Furthermore, the amplitude of variability is much reduced in CCSM4 compared to that of CCSM3. Similarities as well as differences in AMOC variability mechanisms between CCSM3 and CCSM4 are discussed. As in CCSM3, the CCSM4 AMOC variability is primarily driven by the positive density anomalies at the Labrador Sea (LS) deep-water formation site, peaking 2 yr prior to an AMOC maximum. All processes, including parameterized mesoscale and submesoscale eddies, play a role in the creation of salinity anomalies that dominate these density anomalies. High Nordic Sea densities do not necessarily lead to increased overflow transports because the overflow physics is governed by source and interior region density differences. Increased overflow transports do not lead to a higher AMOC either but instead appear to be a precursor to lower AMOC transports through enhanced stratification in LS. This has important implications for decadal prediction studies. The North Atlantic Oscillation (NAO) is significantly correlated with the positive boundary layer depth and density anomalies prior to an AMOC maximum. This suggests a role for NAO through setting the surface flux anomalies in LS and affecting the subpolar gyre circulation strength.
    Description: The CCSM project is supported by NSF and the Office of Science (BER) of the U.S. Department of Energy. SGY and YOK were supported by the NOAA Climate Program Office under Climate Variability and Predictability Program Grants NA09OAR4310163 and NA10OAR4310202, respectively.
    Description: 2013-02-01
    Keywords: Meridional overturning circulation ; Coupled models ; Ocean models ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1684–1700, doi:10.1175/JPO-D-11-0230.1.
    Description: The influences of precipitation on water mass transformation and the strength of the meridional overturning circulation in marginal seas are studied using theoretical and idealized numerical models. Nondimensional equations are developed for the temperature and salinity anomalies of deep convective water masses, making explicit their dependence on both geometric parameters such as basin area, sill depth, and latitude, as well as on the strength of atmospheric forcing. In addition to the properties of the convective water, the theory also predicts the magnitude of precipitation required to shut down deep convection and switch the circulation into the haline mode. High-resolution numerical model calculations compare well with the theory for the properties of the convective water mass, the strength of the meridional overturning circulation, and also the shutdown of deep convection. However, the numerical model also shows that, for precipitation levels that exceed this critical threshold, the circulation retains downwelling and northward heat transport, even in the absence of deep convection.
    Description: This study was supported by the National Science Foundation underGrantsOCE-0850416, OCE-0959381, andOCE-0859381.
    Description: 2013-04-01
    Keywords: Boundary currents ; Deep convection ; Eddies ; Meridional overturning circulation ; Ocean dynamics ; Stability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...