ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (5)
  • American Geophysical Union  (4)
  • Elsevier Inc NY Journals  (1)
  • American Institute of Physics (AIP)
  • Annual Reviews
  • Cambridge University Press
  • 2010-2014  (5)
  • 1995-1999
  • 1985-1989
  • 1965-1969
  • 1960-1964
  • 1950-1954
  • 2014  (2)
  • 2012  (3)
Collection
Years
  • 2010-2014  (5)
  • 1995-1999
  • 1985-1989
  • 1965-1969
  • 1960-1964
  • +
Year
  • 1
    Publication Date: 2017-04-04
    Description: Strong changes in seismic radiation, comparable to those preceding and/or accompanying eruptive activity in recent years, were recorded at Mt. Etna volcano, Italy, from November 2005 to January 2006. The amplitude of volcanic tremor peaked in mid-December 2005 after a continuous, slow increase from August 2005 onwards, during which neither effusive nor paroxysmal activity was observed by volcanologists and alpine guides. During this time span, the centroid locations of volcanic tremor moved towards the surface, more and more clustered below the summit craters. The application of pattern classification analysis based on Self-Organizing Maps and fuzzy clustering to volcanic tremor data highlighted variations in the frequency domain as well. These changes were temporally associated with ground deformation variations, as indicative of a mild inflation of the summit of the volcano, and with a conspicuous increase in the SO2 plume-flux emission. Overall, we interpret this evidence as the result of recharging of the volcanic feeder at depth (〉 3 km below sea level) during which magma did not reach the shallow plumbing system.
    Description: Published
    Description: 4989–5005
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: embargoed_20140606
    Keywords: time series analysis ; volcano seismology ; volcano monitoring ; neural network and fuzzy logic ; seismic tomography ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: From December 2005 to January 2006, an anomalous degassing episode was observed at Mount Etna, well-correlated with an increase in volcanic tremor, and in the almost complete absence of eruptive activity. In the same period, more than 10,000 very long period (VLP) events were detected. Through moment tensor inversion analyses of the VLP pulses, we obtained quantitative estimates of the volumetric variations associated with these events. This allowed a quantitative investigation of the relationship between VLP seismic activity, volcanic tremor, and gas emission rate at Mount Etna. We found a statistically significant positive correlation between SO2 gas flux and volcanic tremor, suggesting that tremor amplitude can be used as a first-order proxy for the background degassing activity of the volcano. VLP volumetric changes and SO2 gas flux are correlated only for the last part of our observations, following a slight change in the VLP source depth. We calculate that the gas associated with VLP signal genesis contributed less than 5% of the total gas emission. The existence of a linear correlation between VLP and degassing activities indicates a general relationship between these two processes. The effectiveness of such coupling appears to depend upon the particular location of the VLP source, suggesting that conduit geometry might play a significant role in the VLP-generating process. These results are the first report on Mount Etna of a quantitative relationship between the amounts of gas emissions directly estimated through instrumental flux measurements and the quantities of gas mass inferred in the VLP source inversion.
    Description: Published
    Description: 4910-4921
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Very Long Period seismicity ; UV scanners network ; Etna Volcano ; volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In this work, waveform variations in repeating volcanotectonic earthquakes occurring from 2001–2009 in the northeastern flank of Mt. Etna were studied. Changes in waveform were found mainly during 2002–2003; and consisted of a decreasing similarity in the coda of events in earthquake families, as revealed by cross-correlation analysis, and delays, increasing proportionally to the lapse time, detected by coda wave interferometry. Such variations, mainly evident at stations located in the north-eastern flank of the volcano, were likely due to medium changes taking place within this region. Localized medium velocity decreases were inferred to occur in 2002–2003, followed by successive increases. The velocity decrease was interpreted as being caused by the opening or enlargement of cracks, produced by intruding magma bodies, intense ground deformation, and/ or VT earthquake activity that accompanied the 2002–2003 Mt. Etna eruption. On the other hand, subsequent velocity increases were interpreted as resulting from healing processes.
    Description: Published
    Description: L18311
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: coda wave interferometry ; Etna ; VT earthquakes ; Pernicana fault ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: One hundred twenty-nine long-period (LP) events, divided into two families of similar events, were recorded by the 50 stations deployed on Mount Etna in the second half of June 2008. During this period lava was flowing from a lateral fracture after a summit Strombolian eruption. In order to understand the mechanisms of these events, we perform moment tensor inversions. Inversions are initially kept unconstrained to estimate the most likely mechanism. Numerical tests show that unconstrained inversion leads to reliable moment tensor solutions because of the close proximity of numerous stations to the source positions. However, single forces cannot be accurately determined as they are very sensitive to uncertainties in the velocity model. Constrained inversions for a crack, a pipe or an explosion then allow us to accurately determine the structural orientations of the source mechanisms. Both numerical tests and LP event inversions emphasise the importance of using stations located as close as possible to the source. Inversions for both families show mechanisms with a strong volumetric component. These events are most likely generated by cracks striking SW–NE for both families and dipping 70° SE (family 1) and 50° NW (family 2). For family 1 events, the crack geometry is nearly orthogonal to the dikelike structure along which events are located, while for family 2 the location gave two pipelike bodies that belong to the same plane as the crack mechanism. The orientations of the cracks are consistent with local tectonics, which shows a SW–NE weakness direction. The LP events appear to be a response to the lava fountain occurring on 10 May 2008 as opposed to the flank lava flow.
    Description: Published
    Description: B01304
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Etna Volcano ; long-period events ; source mechanism ; location ; plumbing systems ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We investigate the displacement induced by the 2–3 April 2010 seismic swarm (the largest event being of Ml 4.3 magnitude) by means of DInSAR data acquired over the volcano by the Cosmo-SkyMed and ALOS radar systems. Satellite observations, combined with leveling data, allowed us to perform a high-resolution modeling inversion capable of fully capturing the deformation pattern and identifying the mechanism responsible for the PFS seismic activation. The inversion results well explain high gradients in the radar line of sight displacements observed along the fault rupture. The slip distribution model indicates that the fault was characterized by a prevailing left-lateral and normal dip–slip motion with no fault dilation and, hence, excludes that the April 2010 seismic swarm is a response to accommodate the stress change induced by magma intrusions, but it is due to the tectonic loading possibly associated with sliding of the eastern flank of the volcano edifice. These results provide a completely different scenario from that derived for the 22 September 2002 M3.7 earthquake along the PFS, where the co-seismic shear-rupture was accompanied by a tensile mechanism associated with a first attempt of magma intrusion that preceded the lateral eruption occurred here a month later. These two opposite cases provide hints into the behavior of the PFS between quiescence and unrest periods at Etna and pose different implications for eruptive activity prediction and volcano hazard assessment. The dense pattern of ground deformation provided by integration of data from short revisiting time satellite missions, together with refined modeling for fault slip distribution, can be exploited at different volcanic sites, where the activity is controlled by volcano-tectonic interaction processes, for a timely evaluation of the impending hazards.
    Description: Published
    Description: 64-72
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: open
    Keywords: Satellite interferometry ; Source modeling ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...