ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology  (3)
  • Wave propagation  (3)
  • 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
  • Wiley  (4)
  • Wiley-Blackwell  (2)
  • American Physical Society
  • 2010-2014  (6)
  • 2011  (6)
Collection
Years
  • 2010-2014  (6)
Year
  • 1
    Publication Date: 2021-06-08
    Description: We investigated the high frequency attenuation of S-waves in Southeastern Alps and Northern External Dinarides using waveforms from 331 earthquakes (3.0〈 Mw〈 6.5). The spectral decay parameter, k, was computed using 1345 three component high quality records, collected by the Italian Strong Motion Network (RAN) and by the Short-Period Seismometric Network of North-Eastern Italy (NEI) in the period 1976-2007. Weak motion data from 11 stations of the NEI network and strong motion data collected by 5 accelerometers of the RAN were analyzed. The k parameter was estimated in the 0-250 Km distance range, in a frequency band extending from the corner frequency of the event up to 25 or 45 Hz, using the amplitude acceleration Fourier spectra of S-waves. The observed record-to-record variability of k was modeled by applying a generalized inversion procedure, using both parametric and non-parametric approaches. Our results evidence that k is independent on earthquake size, while it shows both site and distance dependence. Stations of the NEI network present the same increase of k with epicentral distance, Re, and show values of the zero-distance k parameter, k0(S), between 0.017 and 0.053 s. For the whole region, the k increase with distance can be described through a linear model with slope dk/dRe = (1.4±0.1)x10^(-4) s/Km. Assuming an average S-wave velocity, 〈Vs〉=3.34 Km/s between 5 and 15 Km depth, we estimate an average frequency independent quality factor, 〈Qi〉=2140, for the corresponding crustal layer. The non-parametric approach evidences a weak positive concavity of the curve that describes the k increase with Re at about 90 Km distance. This result can be approximated through a piecewise linear function with slopes of 1.0x10^(-4) s/Km and 1.7x10^(-4) s/Km, in accordance with a three layers model where moving from the intermediate to the bottom layer both 〈Qi〉 and 〈Vs〉 decrease. Two regional dependences were found: data from earthquakes located westward to the NEI network evidence weaker attenuation properties, probably because of S-wave reflections from different part of the Moho discontinuity under the eastern Po Plain, at about 25-30 Km depth, while earthquakes located eastward (in western Slovenia), where the Moho deepens up to 45-50 Km, evidence a higher attenuation. Moreover, the k estimates obtained with data from earthquakes located in the area of the 1998 (Mw=5.7) and 2004 (Mw=5.2) Kobarid events are 0.017 s higher than the values predicted for the whole region, probably because of the high level of fracturing that characterizes fault zones. The comparison between measured and theoretical values of k, computed at a few stations with available S-wave velocity profiles, reveals that the major contribution to the total k0(S) is due to the sedimentary column (from surface to 800 m depth). The hard rock section contribution is limited to 0.005 s, in accordance with a maximum contribution of 0.010 s predicted by the non-parametric inversion.
    Description: Published
    Description: 1393-1416
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Earthquake source observations ; Body waves ; Seismic attenuation ; Site effects ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We analyzed a broad region around L’Aquila in search of seismogenic faults similar to that responsible for the 6 April 2009 earthquake (Mw 6.3). Having the lessons learned from this earthquake in mind, we focused on adjacent areas displaying similar morphotectonic, geological and structural evidence. The basin running from Barisciano to Civitaretenga-Navelli, notably located near the southeastern edge of the 2009 aftershock pattern, appears to be one of such areas. We collected morphotectonic and structural data indicating that this basin is underlain by a major active normal fault (San Pio Fault). All the observations are very much reminiscent of the morphotectonic, geological and structural setting of area struck by the L’Aquila earthquake, suggesting that the newly identified fault has the potential for a Mw 6.2-6.4 shock.
    Description: Published
    Description: Pages: 108–115
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: Seismotectonics ; Morphotectonics ; Active fault ; San Pio basin ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We reply to a comment by Messina et al., who strongly criticized our paper on the San Pio Fault, by showing that in areas of complex geology such as the central Apennines, where the current tectonic setting results from the superposition of different tectonic regimes, the equation: “most visible active fault = major seismogenic fault” can be misleading.
    Description: Published
    Description: 421-423
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Seismotectonics ; morphotectonics ; active fault ; San Pio basin ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We investigate in detail the crustal layering of the ‘Val di Chiana Basin’ (Northern Apennines, Tuscany, Italy) through receiver functions and seismic anisotropy with hexagonal symmetry. The teleseismic data set is recorded in correspondence of a typical foreland basin resulting by the progressive eastward retreat of a regional-scale subduction zone trapped between two continents. We study the azimuthal variations of the computed and binned receiver functions associated to a harmonic angular analysis to emphasize the presence of the dipping and the anisotropic structures. The resulting S-wave velocity model shows interesting and new results for this area that we discuss in a regional geodynamic contest contributing to the knowledge of the structure of the forearc of the subduction zone. A dipping interface (N192°E strike, 18° dip) has been revealed at about 1.5 km depth, that separates the basin sediments and flysch from the carbonates and evaporites. Moreover, we interpret the two upper-crust anisotropic layers (at about 6 and 17 km depth) as the Hercynian Phyllites and Micaschists, of the Metamorphic Tuscan Basement. At relatively shallow depths, the presence of these metamorphic rocks causes the seismic anisotropy in the upper crust. The presence of shallow anisotropic layers is a new and interesting feature, first revealed in the study area. Beneath the crust–mantle transition (Moho), located about 28 km depth, our analysis reveals a 7-km-thick anisotropic layer.
    Description: Published
    Description: 545-556
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic anisotopy ; Computational Seismology ; Wave propagation ; Subduction zone process ; Crustal structure ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: In press
    Description: (11)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The elevation of the Capo Vaticano coastal terraces (Tyrrhenian coast, central Calabria) is the combination of regional uplift and repeated coseismic displacement. We subtract the regional uplift from the total uplift (maximum average uplift rates 0.81-0.97 mm/yr since ~0.7 Ma) and obtain a residual fault-related displacement. Then, we model the residual displacement to provide constraints to the location and geometry of the seismogenic source of the 1905 M7 earthquake, the strongest – and still poorly understood – earthquake of the instrumental era in this area. We test four different potential sources for the dislocation modelling and find that 1) three sources are not compatible with the displacement observed along the terraces, and 2) the only source consistent with the local deformation is the 100°-striking Coccorino Fault. We calculate average long-term vertical slip rates of 0.2-0.3 mm/yr on the Coccorino Fault and estimate an average recurrence time of ~one millennium for a 1905-type earthquake
    Description: Published
    Description: 378-389
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: marine terrace ; fault ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...