ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3022, doi:10.1029/2010GB003892.
    Description: The North Atlantic Ocean accounts for about 25% of the global oceanic anthropogenic carbon sink. This basin experiences significant interannual variability primarily driven by the North Atlantic Oscillation (NAO). A suite of biogeochemical model simulations is used to analyze the impact of interannual variability on the uptake and storage of contemporary and anthropogenic carbon (Canthro) in the North Atlantic Ocean. Greater winter mixing during positive NAO years results in increased mode water formation and subsequent increases in subtropical and subpolar Canthro inventories. Our analysis suggests that changes in mode water Canthro inventories are primarily due to changes in water mass volumes driven by variations in water mass transformation rates rather than local air-sea CO2 exchange. This suggests that a significant portion of anthropogenic carbon found in the ocean interior may be derived from surface waters advected into water formation regions rather than from local gas exchange. Therefore, changes in climate modes, such as the NAO, may alter the residence time of anthropogenic carbon in the ocean by altering the rate of water mass transformation. In addition, interannual variability in Canthro storage increases the difficulty of Canthro detection and attribution through hydrographic observations, which are limited by sparse sampling of subsurface waters in time and space.
    Description: We would like to acknowledge funding from the NOAA Climate Program under the Office of Climate Observations and Global Carbon Cycle Program (NOAA‐NA07OAR4310098), NSF (OCE‐0623034), NCAR, the WHOI Ocean Climate Institute, a National Defense Science and Engineering Graduate Fellowship and an Environmental Protection Agency STAR graduate fellowship. NCAR is sponsored by the National Science Foundation.
    Keywords: North Atlantic Oscillation ; Anthropogenic carbon ; Carbon cycle ; Climate change ; Global climate model ; Mode waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: text/plain
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L06602, doi:10.1029/2010GL046573.
    Description: Iron is an essential micronutrient that limits primary productivity in much of the ocean, including the Gulf of Alaska (GoA). However, the processes that transport iron to the ocean surface are poorly quantified. We combine satellite and meteorological data to provide the first description of widespread dust transport from coastal Alaska into the GoA. Dust is frequently transported from glacially-derived sediment at the mouths of several rivers, the most prominent of which is the Copper River. These dust events occur most frequently in autumn, when coastal river levels are low and riverbed sediments are exposed. The dust plumes are transported several hundred kilometers beyond the continental shelf into iron-limited waters. We estimate the mass of dust transported from the Copper River valley during one 2006 dust event to be between 25–80 ktons. Based on conservative estimates, this equates to a soluble iron loading of 30–200 tons. We suggest the soluble Fe flux from dust originating in glaciofluvial sediment deposits from the entire GoA coastline is two to three times larger, and is comparable to the annual Fe flux to GoA surface waters from eddies of coastal origin. Given that glaciers are retreating in the coastal GoA region and in other locations, it is important to examine whether fluxes of dust are increasing from glacierized landscapes to the ocean, and to assess the impact of associated Fe on marine ecosystems.
    Description: We appreciate support from the USGS CMGP, NCCWSC, the Mendenhall postdoc program, the Woods Hole PEP intern program, and from NASA‐IDS.
    Keywords: Dust ; Glacier ; Iron ; Aerosol ; Climate change ; Micronutrient
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: image/jpeg
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C03026, doi:10.1029/2010JC006670.
    Description: A regional coupled model is used for a dynamic downscaling over the tropical Atlantic based on a global warming simulation carried out with the Geophysical Fluid Dynamics Laboratory CM2.1. The regional coupled model features a realistic representation of equatorial ocean dynamical processes such as the tropical instability waves (TIWs) that are not adequately simulated in many global coupled climate models. The coupled downscaling hence provides a unique opportunity to assess their response and impact in a changing climate. Under global warming, both global and regional models exhibit an increased (decreased) rainfall in the tropical northeast (South) Atlantic. Given this asymmetric change in mean state, the regional model produces the intensified near-surface cross-equatorial southerly wind and zonal currents. The equatorial cold tongue exhibits a reduced surface warming due to the enhanced upwelling. It is mainly associated with the increased vertical velocities driven by cross-equatorial wind, in contrast to the equatorial Pacific, where thermal stratification is suggested to be more important under global warming. The strengthened upwelling and zonal currents in turn amplify the dynamic instability of the equatorial ocean, thereby intensifying TIWs. The increased eddy heat flux significantly warms the equator and counters the effect of enhanced upwelling. Zonal eddy heat flux makes the largest contribution, suggesting a need for sustained monitoring of TIWs with spatially denser observational arrays in the equatorial oceans. Overall, results suggest that eddy heat flux is an important factor that may impact the mean state warming of equatorial oceans, as it does in the current climate.
    Description: H.S. acknowledges the support from the NOAA Climate and Global Change Postdoctoral Fellowship Program and the Penzance Endowed Fund in Support of Assistant Scientists at WHOI. H.S. and S.‐P.X. are thankful for support from NOAA, NSF, and the Japan Agency for Marine‐Earth Science and Technology.
    Keywords: Climate change ; Ocean mesoscale eddy ; Equatorial Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...