ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (3)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
  • American Geophysical Union  (2)
  • Copernicus Publications  (1)
  • 2010-2014  (3)
  • 2011  (3)
Collection
Years
  • 2010-2014  (3)
Year
  • 1
    Publication Date: 2021-05-17
    Description: Stochastic Quantization (SQ) is a method for the approximation of a continuous probability distribution with a discrete one. The proposal made in this paper is to apply this technique to reduce the number of numerical simulations for systems with uncertain inputs, when estimates of the output distribution are needed. This question is relevant in volcanology, where realistic simulations are very expensive and uncertainty is always present. We show the results of a benchmark test based on a one-dimensional steady model of magma flow in a volcanic conduit.
    Description: Published
    Description: 49-59
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: N/A or not JCR
    Description: open
    Keywords: volcano physics ; conduit dynamics ; probabilities ; mixed deterministic-probabilistic approach ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-03
    Description: A simple linear relation can be used to link time averaged discharge rate (TADR) and lava flow area (A). The relation applies to given insulation conditions, as described by the characteristic flow surface temperature (Te), and will vary from case-to-case depending on rheological and topographic influences on flow spreading. Most flows have insulation conditions that change through time, modifying the relationship between TADR and area as insulation conditions evolve. Using lidar data we can define TADR, the flow area that the discharge feeds and Te, allowing generation of a case-specific relation to convert satellite-data-derived flow areas to TADR. For Etna's 2006 lava flow field we obtain a relation whereby TADR = 5.6 × 10−6 A for well insulated conditions (Te = 100°C) and TADR = 1.5 × 10−4 A for poorly insulated conditions (Te = 600°C).
    Description: Published
    Description: L20308
    Description: 1.10. TTC - Telerilevamento
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: lava flow ; discharge rate ; area ; surface temperature ; lidar ; Etna. ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: A new 2D/3D Lagrangian particle model (named LPAC) for the dynamics of clasts ejected during explosive eruptions is presented. The novelty of the model lies in the one-way coupling of the carrier flow field, given by a Eulerian multiphase flow code, and the particles. The model is based on a simplification of the Basset-Boussinesq-Oseen equation, expressing the Lagrangian equation of a particle as the sum of the forces exerted on it along its trajectory. It is assumed that particles are non-interacting and do not affect the background carrier flow and that the drag coefficient is constant. The model was applied to large clasts produced by Vulcanian explosions, in particular those occurring in August 1997 at Soufrière Hills Volcano, Montserrat (West Indies, UK). Simulation results allowed parametric studies as well as semi-quantitative comparisons between modeling results and field evidence. Major results include (1) the carrier flow was found to play a fundamental role even for meter-sized particles—a 1 m diameter block is predicted to reach a distance that is about 70% greater than that predicted without the effect of the carrier flow (assuming the same initial velocity), (2) assumption of the initial velocity of the particle was dropped thanks to the description of both the acceleration and deceleration phases along the particle trajectory, (3) by adopting experimentally based drag coefficients, large particles were able to reach greater distances with respect to smaller particles consistently with field observations and (4) the initial depth of the particle in the conduit was found to mainly influence the ejection velocity while the initial radial position with respect to the conduit axis was found to play a major role on the distance reached by the particle.
    Description: Published
    Description: B08206
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: ballistic dynamics ; Lagrangian modeling ; explosive volcanism ; Montserrat ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...