ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Volcanic plume  (3)
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (2)
  • Springer  (5)
  • Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
  • BioMed Central
  • Blackwell Publishing Ltd
  • Institute of Physics
  • 2010-2014  (5)
  • 1950-1954
  • 2011  (5)
Collection
Publisher
Years
  • 2010-2014  (5)
  • 1950-1954
Year
  • 1
    Publication Date: 2017-04-04
    Description: Active volcanoes are thought to be important contributors to the atmospheric mercury (Hg) budget, and this chemical element is one of the most harmful atmospheric pollutants, owing to its high toxicity and long residence time in ecosystems. There is, however, considerable uncertainty over the magnitude of the global volcanic Hg flux, since the existing data on volcanogenic Hg emissions are sparse and often ambiguous. In an attempt to extend the currently limited dataset on volcanogenic Hg emissions, we summarize the results of Hg flux measurements at seven active open-conduit volcanoes; Stromboli, Asama, Miyakejima, Montserrat, Ambrym, Yasur, and Nyiragongo.. Data from the domebuilding Soufriere Hills volcano are also reported. Using our determined mercury to SO2 mass ratios in tandem with the simultaneously-determined SO2 emission rates, we estimate that the 7 volcanoes have Hg emission rates ranging from 0.2 to 18 t yr-1 (corresponding to a total Hg flux of ~41 t·yr-1). Based on our dataset and previous work, we propose that a Hg/SO2 plume ratio ~10-5 is bestrepresentative of gas emissions from quiescent degassing volcanoes. Using this ratio, we infer a global volcanic Hg flux from persistent degassing of ~95 t·yr-1
    Description: Published
    Description: 497-510
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanogenic mercury ; Mercury ; Volcanic plume ; Mercury flux ; Mercury inventories ; Atmospheric mercury ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-24
    Description: Recent laboratory experiments on Etna basalt have permitted the generation of an extensive catalogue of acoustic emissions (AE) during two key experimental phases. Firstly, AE have been generated during triaxial compressional tests and formation of a complex fracture/damage zone. Secondly, rapid fluid decompression through the damage/shear zone after failure. We report new results from an advanced analysis method using AE spectrograms, allowing us to qualitatively identify high and low frequency events; essentially comparable to seismicity in volcanic areas. Our analysis, for the first time, quantitatively classifies ‘families’ of AE events belonging to the same experimental stage without prior knowledge. We then test the method using the AE catalogue for verification, which is not possible with field data. FFT spectra, obtained from AE, are subdivided into equal log intervals for which a local slope is calculated. Factor analysis has been then applied, in which we use a data matrix of columns representing the variables considered (frequency data averaged in bins) vs. rows indicating each AE data set. Factor analysis shows that the method is very effective and suitable for reducing data complexity, allowing distinct factors to be obtained. We conclude that most of the data variance (information content) can be well represented by three factors only, each one representing a well defined frequency range. Through the factor scores it is possible to represent data in a lower dimension factor space. Classification is then possible by identifying clusters of AE belonging to the same experimental stage. This allows us to propose a deformation/decompression interpretation based solely on the AE frequency analysis and to identify a third type of AE related to fluid movements in the deformation stage.
    Description: Published
    Description: 201-211
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: acoustic emissions ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: This paper presents an analysis of seismicity associated with the volcanic activity of Volcàn de Colima (México) and recorded in the period November 2005–April 2006 during a field survey by the Istituto Nazionale di Geofisica e Vulcanologia (INGV)–Osservatorio Vesuviano, the Observatorio Vulcanologico de Colima of Colima University and the Instituto Andaluz de Geofisica, University of Granada. Three different types of volcanic earthquakes have been identified on the basis of their spectral properties: Type A (0.3–1 Hz), Type B (1–5 Hz) and Type C (3–4 Hz). Results of polarization analysis applied to Type A events show a predominance of radial motion, indicating that the wavefield comprises compressional waves (P) and shear waves polarized in the vertical plane (SV), while the signal always begins with a negative polarity. Type A, B and C earthquakes have been located using both a flat layered model and a 3D model including topography. Hypocentre distributions indicate that the source of Type A signals is very shallow and confined to a small volume lying about 1 km below the crater. In contrast, the source of Type B and C events is significantly deeper, with most hypocentres located in a volume of about 1 km3 centred at 2.5–3 km depth. A cluster analysis based on the crosscorrelation among the waveforms of different events recorded at the same station was applied to Type A earthquakes. Only two clusters, which include only a small percentage of events were found, indicating that earthquake families were uncommon during the period of our survey.
    Description: Published
    Description: 887-898
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Colima Volcano ; Long Period Events ; Earthquake location ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9±0.27‰ and −1.41± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work values of Etna CO2 from~ −4‰, in the 1970’s and the 1980’s, to~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.
    Description: Published
    Description: 531-542
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic plume ; Carbon isotope ; Etna ; Magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanic plume ; Carbon isotope ; Etna ; Magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...