ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (6)
  • Etna  (3)
  • Springer  (7)
  • Blackwell Publishing Ltd  (1)
  • Earthscan  (1)
  • Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
  • BioMed Central
  • Institute of Physics
  • 2010-2014  (9)
  • 1950-1954
  • 2011  (9)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 2010-2014  (9)
  • 1950-1954
Jahr
  • 1
    Publikationsdatum: 2021-05-17
    Beschreibung: This special issue is dedicated to Yuri Taran's outstanding contributions to gas geochemistry that began in the early 1980s with his work on deuterium and 18O compositions of geothermal waters in the Mutnovsky (Kamchatka) region and continues to this day with work on the Kamchatka volcanic volatile budget, carbon isotopes of hydrocarbons, and new insights into the geochemistry of El Chichón volcano, Chiapas. Yuri has contributed greatly to the field of volcanic gas geochemistry and was the first to recognize the distinct deuterium and oxygen isotopic composition of fumarole condensates from volcanoes in Kamchatka (Taran et al. 1987a). The shift in δD and δ18O to significantly heavier values compared to local meteoric water led Yuri to introduce the term “andesitic water” (Taran et al. 1989a, b) which has since been recognized at subduction zone volcanoes globally. This distinct isotopic composition is evidence that volcanoes release water that ultimately originates as subducted seawater and is recycled through the mantle wedge back to the earth's surface. Yuri's early work on the gas emissions from Kamchatka and Kurile Islands volcanoes also included the development and testing of gas geothermometers (Taran 1986) and investigating hydrothermal alteration using isotopic data (Taran et al. 1987b). His curiosity remained focused on the isotope systematics of volcanic gases discharging from Kamchatka and the Kuriles through the late 1980s and 1990s with publications on the gas compositions of Klyuchevskoi (Taran et al. 1991), Mutnovsky (Taran et al. 1992), Avachinsky and Koryaksky (Taran et al. 1997). Yuri was involved in the discovery of a pure and unique rhenium mineral on Kudryavy volcano (Korzhinsky et al. 1994) and provided one of the most detailed chemical studies of high temperature (up to 950°C) fumaroles to date of any volcano (Taran et al. 1995). His 1995 paper on Kudryavy remains highly cited and provides the highest quality volcanic gas data which also include trace elements from a subduction zone. Such data are crucial when we attempt to interpret lower temperature volcanic gas compositions or calculate rare metal fluxes from volcanoes worldwide. His most recent publication on Kamchatka-Kurile volcanic emissions provides a detailed analysis of the total gas flux from these volcanoes (Taran 2009).
    Beschreibung: Published
    Beschreibung: 369-371
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Fluids Geochemistry ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-04
    Beschreibung: Active volcanoes are thought to be important contributors to the atmospheric mercury (Hg) budget, and this chemical element is one of the most harmful atmospheric pollutants, owing to its high toxicity and long residence time in ecosystems. There is, however, considerable uncertainty over the magnitude of the global volcanic Hg flux, since the existing data on volcanogenic Hg emissions are sparse and often ambiguous. In an attempt to extend the currently limited dataset on volcanogenic Hg emissions, we summarize the results of Hg flux measurements at seven active open-conduit volcanoes; Stromboli, Asama, Miyakejima, Montserrat, Ambrym, Yasur, and Nyiragongo.. Data from the domebuilding Soufriere Hills volcano are also reported. Using our determined mercury to SO2 mass ratios in tandem with the simultaneously-determined SO2 emission rates, we estimate that the 7 volcanoes have Hg emission rates ranging from 0.2 to 18 t yr-1 (corresponding to a total Hg flux of ~41 t·yr-1). Based on our dataset and previous work, we propose that a Hg/SO2 plume ratio ~10-5 is bestrepresentative of gas emissions from quiescent degassing volcanoes. Using this ratio, we infer a global volcanic Hg flux from persistent degassing of ~95 t·yr-1
    Beschreibung: Published
    Beschreibung: 497-510
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Volcanogenic mercury ; Mercury ; Volcanic plume ; Mercury flux ; Mercury inventories ; Atmospheric mercury ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-04-04
    Beschreibung: During 2007–2008, three CO2 flux surveys were performed on El Chichón volcanic lake, Chiapas, Mexico, with an additional survey in April 2008 covering the entire crater floor (including the lake). The mean CO2 flux calculated by sequential Gaussian simulation from the lake was 1,190 (March 2007), 730 (December 2007) and 1,134 g m−2 day−1 (April 2008) with total emission rates of 164±9.5 (March 2007), 59±2.5 (December 2007) and 109±6.6 t day−1 (April 2008). The mean CO2 flux estimated from the entire crater floor area was 1,102 g m−2 day−1 for April 2008 with a total emission rate of 144±5.9 t day−1. Significant change in CO2 flux was not detected during the period of survey, and the mapping of the CO2 flux highlighted lineaments reflecting the main local and regional tectonic patterns. The 3He/4He ratio (as high as 8.1 RA) for gases in the El Chichón crater is generally higher than those observed at the neighbouring Transmexican Volcanic Belt and the Central American Volcanic Arc. The CO2/3He ratios for the high 3He/4He gases tend to have the MORB-like values (1.41×109), and the CO2/3He ratios for the lower 3He/4He gases fall within the range for the arc-type gases. The high 3He/4He ratios, the MORB-like CO2/3He ratios for the high 3He/4He gases and high proportion of MORB-CO2 (M=25 ±15%) at El Chichón indicate a greater depth for the generation of magma when compared to typical arc volcanoes.
    Beschreibung: Published
    Beschreibung: 423-441
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): El Chichon ; CO2 soil flux ; Crater Lake ; Gas geochemistry ; He-C isotopes ; Fumarolic and bubbling gases ; Tectonics ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-02-24
    Beschreibung: On 27 February 2007, a new eruption occurred on Stromboli which lasted until 2 April. It was characterized by effusive activity on the Sciara del Fuoco and by a paroxysmal event (15 March). This crisis represented an opportunity for us to refine the model that had been developed previously (2002-2003 eruption) and to improve our understanding of the relationship between the magmatic dynamics of the volcano and the geochemical variations in the fluids. In particular, the evaluation of the dynamic equilibrium between the volatiles (CO2 and SO2) released from the magma and the corresponding fluids discharged from the summit area allowed us to evaluate the level of criticality of the volcanic activity. One of the major accomplishments of this study is a four-year database of summit soil CO2 flux on the basis of which we define the thresholds (Low-Medium-High) for this parameter that are empirically based on the natural volcanological evolution of Stromboli. The SO2 fluxes of the degassing plume and the CO2 fluxes emitted from the soil at Pizzo Sopra la Fossa are also presented. Noteworthy geochemical signals of volcanic unrest have been clearly identified before, during, and after the effusive activity. These signals were found almost simultaneously in the degassing plume (SO2 flux) and in soil degassing (CO2 flux) at the summit, although the two degassing processes are shown to be clearly different. The interpretation of the results will be useful for future volcanic surveillance at Stromboli.
    Beschreibung: In press
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Stromboli Volcano ; CO2 soil flux ; Geochemical monitoring ; 2007 eruption ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2017-04-04
    Beschreibung: Methane soil flux measurements have been made in 38 sites at the geothermal system of Sousaki (Greece) with the closed chamber method. Fluxes range from –47.6 to 29,150 mg m-2 d-1 and the diffuse CH4 output of the system has been estimated at 19 t a-1. Contemporaneous CO2 flux measurements showed a moderate positive correlation between CO2 and CH4 fluxes. Comparison of the CO2/CH4 soil flux ratios with the CO2/CH4 ratio of the gases of the main gas manifestations provided evidence for methanotrophic activity within the soil. Laboratory CH4 consumption experiments confirmed the presence of methanotrophic microorganisms in soil samples collected at Sousaki. Consumption was generally in the range from –4.9 to –38.9 pmolCH4 h-1 g-1 but could sometimes reach extremely high values (–33,000 pmolCH4 h-1 g-1.). These results are consistent with recent studies on other geothermal systems that revealed the existence of thermoacidophilic bacteria exerting methanotrophic activity in hot, acid soils, thereby reducing methane emissions to the atmosphere.
    Beschreibung: Published
    Beschreibung: 97–107
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Sousaki ; accumulation chamber ; soil degassing ; hydrothermal systems ; methane output ; methanotrophic activity ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2017-04-04
    Beschreibung: We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9±0.27‰ and −1.41± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work values of Etna CO2 from~ −4‰, in the 1970’s and the 1980’s, to~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.
    Beschreibung: Published
    Beschreibung: 531-542
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Volcanic plume ; Carbon isotope ; Etna ; Magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    Earthscan
    Publikationsdatum: 2017-04-04
    Beschreibung: Natural emissions of CH4 are not only produced by contemporary biochemical sources such as wetlands, termites, oceans, wildfires and wild animals, and fossil CH4 (that is geologically ancient, radiocarbon-free CH4) is not emitted only by the fossil fuel industry. Beyond CH4 from the biosphere and CH4 from anthropogenic sources, a third CH4 ‘breath’ exists – earth’s degassing. The term ‘degassing’, in general, makes one think of volcanoes and geothermal manifestations (eruptions, fumaroles, mofettes, hydrothermal springs, either on land or on the seafloor) that release carbon dioxide, water vapour and sulphur gases, but this is only a partial vision of earth’s degassing. Earth also exhales hydrocarbons, especially in geologically ‘cold’ areas, such as sedimentary basins where large quantities of natural gas migrate from shallow or deep rocks and reservoirs to the surface along faults and fractured rocks. The phenomenon is called ‘seepage’ and the gas is almost totally CH4, with low quantities (hundreds of ppmv to a few per cent) of other hydrocarbons (mainly ethane and propane) and non-hydrocarbon gases (CO2, N2, H2S, Ar and He). Gaseous hydrocarbons are produced by geologically ancient microbial activity, in shallow and low-temperature sedimentary rocks, and by thermogenic processes in deeper, warmer rocks. Therefore, seepage is a natural source of fossil CH4. Until recently, geological seepage has generally been neglected or considered a ‘minor source’ for CH4 in the scientific literature (for example Lelieveld et al, 1998). The Second and Third Assessment Reports of the Intergovernmental Panel on Climate Change (Schimel et al, 1996; Prather et al, 2001) only considered gas hydrates as geological sources of methane. Gas hydrates, or CH4 clathrates as they are sometimes called, are ice-like mixtures of water and CH4 trapped in oceanic sediments (for example Kvenvolden, 1988). The majority of this gas escaping from melting deep-sea hydrates is dissolved in the seawater column and does not enter the atmosphere. However, global emissions of CH4 to the atmosphere from hydrates have been reported to be roughly 3Tg y–1 (Kvenvolden, 1988) to 10Tg y–1 (Lelieveld et al, 1998),highly speculative values since they result from misquotations not supported by direct measurements. Studies conducted during the last ten years have made it clear that other geological CH4 sources, much more important than gas hydrates, exist; and there has been a growing consensus regarding the importance of marine (offshore) seepage, independent from gas hydrates, as a global contributor of CH4 to the atmosphere (for example Judd et al, 2002; Judd and Hovland, 2007). Experimental flux data, acquired since 2001, have provided more and more evidence for large emissions from continental (onshore) gas manifestations, including macroseeps and diffuse microseepage from soils (Etiope et al, 2008; Etiope, 2009, and references therein). Geothermal emissions are subordinate, but worth considering globally, while volcanoes appear not to be substantial CH4 contributors (Etiope et al, 2007a). At present, it is clear and unambiguously understood that geological emissions are a significant global source of CH4; and today, earth’s degassing is considered the second highest natural source for CH4 emissions after wetlands (for example Etiope, 2004; Kvenvolden and Rogers, 2005; Etiope et al, 2008). A new global estimate for geological sources has finally been acknowledged by the IPCC in its Fourth Assessment Report (Denman et al, 2007). Also, geological seepage has been considered as a new source for natural CH4 in the Emission Inventory Guidebook of the European Environment Agency (EMEP/EEA, 2009) and in the new US Environmental Protection Agency report on Natural Emissions of Methane (US EPA, 2010).
    Beschreibung: Published
    Beschreibung: 42-61
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: restricted
    Schlagwort(e): Methane ; Seepage ; Mud vulcanoes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: book chapter
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2017-04-04
    Beschreibung: We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.
    Beschreibung: In press
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Volcanic plume ; Carbon isotope ; Etna ; Magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2017-04-04
    Beschreibung: Etna’s 2001 basaltic lava flow provided a good example of the distal flow segment between the flow front and stable channel, across which the flow evolves from channel-contained to dispersed. This zone was mapped with meter precision using LIDAR data collected during 2004 and 2005. These data, supported by field mapping, show that the flow front comprised eight lobes each 10 to 20 m high. The flow front appears to have advanced not as a single unit, but as a series of lobes moving forward one lobe at a time. Primary lobes were centered on the channel axis and marginal lobes were off-axis. The lobes advanced as breakouts of low-yield-strength lava from the flow core of the stalled flow front. Marginal lobes were abandoned and contributed to marginal levees flanking the transitional channel. For Etna’s 2001 flow, the transitional channel is 140 m wide, 700 m long and fed a 240-m-long zone of dispersed flow; the change from stable to transitional channel occurred at a major reduction in slope. Above this, the stable channel is 5.2 km long, 55 to 105 m wide and bounded by 15- to 25-m-high levees, and the stable channel is located over a previous channel. In a final stage of activity, lava ponding at the break-in-slope that marks the terminus of the stable channel put pressure on the eastern levee, causing it to fail. Liberated lava then fed a final break-out to the east. Similar flow front-features occur at other volcanoes, indicating that similar processes are characteristic of dispersed flow zones.
    Beschreibung: Published
    Beschreibung: 119-127
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Basalt lava ; Channelised lava flow ; Flow front ; Zone of dispersed flow ; Flow dynamics ; LIDAR ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...