ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Man/System Technology and Life Support  (575)
  • Meteorology and Climatology  (436)
  • 2010-2014  (1,011)
  • 1995-1999
  • 1985-1989
  • 2011  (1,011)
  • 1
    Publication Date: 2018-06-06
    Description: It is a common experience that rainfall is intermittent in space and time. This is reflected by the fact that the statistics of area- and/or time-averaged rain rate is described by a mixed distribution with a nonzero probability of having a sharp value zero. In this paper we have explored the dependence of the probability of zero rain on the averaging space and time scales in large multiyear data sets based on radar and rain gauge observations. A stretched exponential fannula fits the observed scale dependence of the zero-rain probability. The proposed formula makes it apparent that the space-time support of the rain field is not quite a set of measure zero as is sometimes supposed. We also give an ex.planation of the observed behavior in tenus of a simple probabilistic model based on the premise that rainfall process has an intrinsic memory.
    Keywords: Meteorology and Climatology
    Type: Water Resources Research; Volume 47; W08522
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Chemistry and Physics; Volume 11; Iss. 15; 7483-7490
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: NASA is interested in designing a spacecraft capable of visiting a Near Earth Object (NEO), performing experiments, and then returning safely. Certain periods of this mission will require the spacecraft to remain stationary relative to the NEO. Such situations require an anchoring mechanism that is compact, easy to deploy and upon mission completion, easily removed. The design philosophy used in the project relies on the simulation capability of a multibody dynamics physics engine. On Earth it is difficult to create low gravity conditions and testing in low gravity environments, whether artificial or in space is costly and therefore not feasible. Through simulation, gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine [1], a simulation package capable of utilizing massively parallel GPU hardware, several validation experiments will be performed. Once there is sufficient confidence, modeling of the NEO regolith interaction will begin after which the anchor tests will be performed and analyzed. The outcome of this task is a study with an analysis of several different anchor designs, along with a recommendation on which anchor is better suited to the task of anchoring. With the anchors tested against a range of parameters relating to soil, environment and anchor penetration angles/velocities on a NEO.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: Several recent studies have found that clouds are surrounded by a transition zone of rapidly changing aerosol optical properties and particle size. Characterizing this transition zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects, and also for improving satellite retrievals of aerosol properties. This letter presents a statistical analysis of a monthlong global data set of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations over oceans. The results show that the transition zone is ubiquitous over all oceans and extends up to 15 km away from clouds. They also show that near-cloud enhancements in backscatter and particle size are strongest at low altitudes, slightly below the top of the nearest clouds. Also, the enhancements are similar near illuminated and shadowy cloud sides, which confirms that the asymmetry of Moderate Resolution Imaging Spectroradiometer reflectances found in an earlier study comes from 3-D radiative processes and not from differences in aerosol properties. Finally, the effects of CALIPSO aerosol detection and cloud identification uncertainties are discussed. The findings underline the importance of accounting for the transition zone to avoid potential biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.
    Keywords: Meteorology and Climatology
    Type: IEEE Geoscience and Remote Sensing Letters; Volume 8; No. 1; 19-23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: We use five and one-half years of limb- and nadir-viewing temperature mapping observations by the Composite Infrared Radiometer-Spectrometer (CIRS) on the Cassini Saturn orbiter, taken between July 2004 and December 2009 (Ls from 293 deg. to 48 deg.; northern mid-winter to just after northern spring equinox), to monitor temperature changes in the upper stratosphere and lower mesosphere of Titan. The largest changes are in the northern (winter) polar stratopause, which has declined in temperature by over 20 K between 2005 and 2009. Throughout the rest of the mid to upper stratosphere and lower mesosphere, temperature changes are less than 5 K. In the southern hemisphere, temperatures in the middle stratosphere near 1 mbar increased by 1-2 K from 2004 through early 2007, then declined by 2-4 K throughout 2008 and 2009, with the changes being larger at more polar latitudes. Middle stratospheric temperatures at mid-northern latitudes show a small 1-2 K increase from 2005 through 2009, at north polar latitudes within the polar vortex, temperatures in the middle stratosphere show an approximately 4 K increase during 2007, followed by a comparable decrease in temperatures in 2008 and into early 2009. The observed temperature changes in the north polar region are consistent with a weakening of the subsidence within the descending branch of the middle atmosphere meridional circulation.
    Keywords: Meteorology and Climatology
    Type: Icarus (ISSN 0019-1035); Volume 211; Issue 1; 686-698
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: A new type of EI Nino event has been identified in the last decade. During "warm pool" EI Nino (WPEN) events, sea surface temperatures (SSTs) in the central equatorial Pacific are warmer than average. The EI Nino signal propagates poleward and upward as large-scale atmospheric waves, causing unusual weather patterns and warming the polar stratosphere. In austral summer, observations show that the Antarctic lower stratosphere is several degrees (K) warmer during WPEN events than during the neutral phase of EI Nino/Southern Oscillation (ENSO). Furthermore, the stratospheric response to WPEN events depends of the direction of tropical stratospheric winds: the Antarctic warming is largest when WPEN events are coincident with westward winds in the tropical lower and middle stratosphere i.e., the westward phase of the quasi-biennial oscillation (QBO). Westward winds are associated with enhanced convection in the subtropics, and with increased poleward wave activity. In this paper, a new formulation of the Goddard Earth Observing System Chemistry-Climate Model, Version 2 (GEOS V2 CCM) is used to substantiate the observed stratospheric response to WPEN events. One simulation is driven by SSTs typical of a WPEN event, while another simulation is driven by ENSO neutral SSTs; both represent a present-day climate. Differences between the two simulations can be directly attributed to the anomalous WPEN SSTs. During WPEN events, relative to ENSO neutral, the model simulates the observed increase in poleward planetary wave activity in the South Pacific during austral spring, as well as the relative warming of the Antarctic lower stratosphere in austral summer. However, the modeled response to WPEN does not depend on the phase of the QBO. The modeled tropical wind oscillation does not extend far enough into the lower stratosphere and upper troposphere, likely explaining the model's insensitivity to the phase of the QBO during WPEN events.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: In October 2003 a campaign on board the Australian icebreaker Aurora Australis had the objective to validate standard Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea-ice products. Additionally, the satellite laser altimeter on the Ice, Cloud and land Elevation Satellite (ICESat) was in operation. To capture the large-scale information on the sea-ice conditions necessary for satellite validation, the measurement strategy was to obtain large-scale sea-ice statistics using extensive sea-ice measurements in a Lagrangian approach. A drifting buoy array, spanning initially 50 km 100 km, was surveyed during the campaign. In situ measurements consisted of 12 transects, 50 500 m, with detailed snow and ice measurements as well as random snow depth sampling of floes within the buoy array using helicopters. In order to increase the amount of coincident in situ and satellite data an approach has been developed to extrapolate measurements in time and in space. Assuming no change in snow depth and freeboard occurred during the period of the campaign on the floes surveyed, we use buoy ice-drift information as well as daily estimates of thin-ice fraction and rough-ice vs smooth-ice fractions from AMSR-E and QuikSCAT, respectively, to estimate kilometer-scale snow depth and freeboard for other days. The results show that ICESat freeboard estimates have a mean difference of 1.8 cm when compared with the in situ data and a correlation coefficient of 0.6. Furthermore, incorporating ICESat roughness information into the AMSR-E snow depth algorithm significantly improves snow depth retrievals. Snow depth retrievals using a combination of AMSR-E and ICESat data agree with in situ data with a mean difference of 2.3 cm and a correlation coefficient of 0.84 with a negligible bias.
    Keywords: Meteorology and Climatology
    Type: Annals of Glaciology; Volume 52; Iss. 57; 242-248
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: This paper compares recent spatial and temporal anomaly time series of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the 7 year time period September 2002 through February 2010. This time period is marked by a substantial decrease of OLR, on the order of +/-0.1 W/sq m/yr, averaged over the globe, and very large spatial variations of changes in OLR in the tropics, with local values ranging from -2.8 W/sq m/yr to +3.1 W/sq m/yr. Global and Tropical OLR both began to decrease significantly at the onset of a strong La Ni a in mid-2007. Late 2009 is characterized by a strong El Ni o, with a corresponding change in sign of both Tropical and Global OLR anomalies. The spatial patterns of the 7 year short term changes in AIRS and CERES OLR have a spatial correlation of 0.97 and slopes of the linear least squares fits of anomaly time series averaged over different spatial regions agree on the order of +/-0.01 W/sq m/yr. This essentially perfect agreement of OLR anomaly time series derived from observations by two different instruments, determined in totally independent and different manners, implies that both sets of results must be highly stable. This agreement also validates the anomaly time series of the AIRS derived products used to compute OLR and furthermore indicates that anomaly time series of AIRS derived products can be used to explain the factors contributing to anomaly time series of OLR.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-06
    Description: The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides. in addition to atmospheric fields. global estimates of soil moisture, latent heat flux. snow. and runoff for J 979-present. This study introduces a supplemental and improved set of land surface hydrological fields ('MERRA-Land') generated by replaying a revised version of the land component of the MERRA system. Specifically. the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameters in the rainfall interception model, changes that effectively correct for known limitations in the MERRA land surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim reanalysis. MERRA-Land and ERA-Interim root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 15 basins in the western US) of MERRA and MERRA-Land is typically higher than that of ERA-Interim. With a few exceptions. the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using '\-tERRA output for land surface hydrological studies.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-06
    Description: Saharan dust was observed over the Caribbean basin during the summer 2007 NASA Tropical Composition, Cloud, and Climate Coupling (TC4) field experiment. Airborne Cloud Physics Lidar (CPL) and satellite observations from MODIS suggest a barrier to dust transport across Central America into the eastern Pacific. We use the NASA GEOS-5 atmospheric transport model with online aerosol tracers to perform simulations of the TC4 time period in order to understand the nature of this barrier. Our simulations are driven by the Modem Era Retrospective-Analysis for Research and Applications (MERRA) meteorological analyses. We evaluate our baseline simulated dust distributions using MODIS and CALIOP satellite and ground-based AERONET sun photometer observations. GEOS-5 reproduces the observed location, magnitude, and timing of major dust events, but our baseline simulation does not develop as strong a barrier to dust transport across Central America as observations suggest. Analysis of the dust transport dynamics and lost processes suggest that while both mechanisms play a role in defining the dust transport barrier, loss processes by wet removal of dust are about twice as important as transport. Sensitivity analyses with our model showed that the dust barrier would not exist without convective scavenging over the Caribbean. The best agreement between our model and the observations was obtained when dust wet removal was parameterized to be more aggressive, treating the dust as we do hydrophilic aerosols.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-11
    Description: Sea surface temperature (SST) studies are often focused on improving accuracy, or understanding and quantifying uncertainties in the measurement, as SST is a leading indicator of climate change and represents the longest time series of any ocean variable observed from space. Over the past several decades SST has been studied with the use of satellite data. This allows a larger area to be studied with much more frequent measurements being taken than direct measurements collected aboard ship or buoys. The Group for High Resolution Sea Surface Temperature (GHRSST) is an international project that distributes satellite derived sea surface temperatures (SST) data from multiple platforms and sensors. The goal of the project is to distribute these SSTs for operational uses such as ocean model assimilation and decision support applications, as well as support fundamental SST research and climate studies. Examples of near real time applications include hurricane and fisheries studies and numerical weather forecasting. The JPL group has produced a new 1 km daily global Level 4 SST product, the Multiscale Ultrahigh Resolution (MUR), that blends SST data from 3 distinct NASA radiometers: the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR), and the Advanced Microwave Scanning Radiometer ? Earth Observing System(AMSRE). This new product requires further validation and accuracy assessment, especially in coastal regions.We examined the accuracy of the new MUR SST product by comparing the high resolution version and a lower resolution version that has been smoothed to 19 km (but still gridded to 1 km). Both versions were compared to the same data set of in situ buoy temperature measurements with a focus on study regions of the oceans surrounding North and Central America as well as two smaller regions around the Gulf Stream and California coast. Ocean fronts exhibit high temperature gradients (Roden, 1976), and thus satellite data of SST can be used in the detection of these fronts. In this case, accuracy is less of a concern because the primary focus is on the spatial derivative of SST. We calculated the gradients for both versions of the MUR data set and did statistical comparisons focusing on the same regions.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-02
    Description: Photocatalytic materials are being used to purify air, to kill microbes, and to keep surfaces clean. A wide variety of materials are being developed, many of which have different abilities to absorb various wavelengths of light. Material variability, combined with both spectral illumination intensity and spectral distribution variability, will produce a wide range of performance results. The proposed technology estimates photocatalytic active radiation (PcAR), a unit of radiation that normalizes the amount of light based on its spectral distribution and on the ability of the material to absorb that radiation. Photocatalytic reactions depend upon the number of electron-hole pairs generated at the photocatalytic surface. The number of electron-hole pairs produced depends on the number of photons per unit area per second striking the surface that can be absorbed and whose energy exceeds the bandgap of the photocatalytic material. A convenient parameter to describe the number of useful photons is the number of moles of photons striking the surface per unit area per second. The unit of micro-einsteins (or micromoles) of photons per m2 per sec is commonly used for photochemical and photoelectric-like phenomena. This type of parameter is used in photochemistry, such as in the conversion of light energy for photosynthesis. Photosynthetic response correlates with the number of photons rather than by energy because, in this photochemical process, each molecule is activated by the absorption of one photon. In photosynthesis, the number of photons absorbed in the 400 700 nm spectral range is estimated and is referred to as photosynthetic active radiation (PAR). PAR is defined in terms of the photosynthetic photon flux density measured in micro-einsteins of photons per m2 per sec. PcAR is an equivalent, similarly modeled parameter that has been defined for the photocatalytic processes. Two methods to measure the PcAR level are being proposed. In the first method, a calibrated spectrometer with a cosine receptor is used to measure the spectral irradiance. This measurement, in conjunction with the photocatalytic response as a function of wavelength, is used to estimate the PcAR. The photocatalytic response function is determined by measuring photocatalytic reactivity as a function of wavelength. In the second method, simple shaped photocatalytic response functions can be simulated with a broad-band detector with a cosine receptor appropriately filtered to represent the spectral response of the photocatalytic material. This second method can be less expensive than using a calibrated spectrometer.
    Keywords: Man/System Technology and Life Support
    Type: NASA Tech Briefs, February 2011; 6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered somewhat in 2008, 2009 and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, the trends in the extent and area remain strongly negative at -12.2% and -13.5 %/decade, respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data in the winters of 1979 to 2011 was studied and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2 % per decade, respectively, with record low value in 2008 followed by higher values in 2009, 2010 and 2011. Such high rate in the decline of the thick component of the Arctic ice cover means a reduction in average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007 suggesting a strong role of second year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature which is increasing at about three times global average in the Arctic but appears weakly correlated with the AO which controls the dynamics of the region. An 8 to 9-year cycle is apparent in the multiyear ice record which could explain in part the slight recovery in the last three years.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-05
    Description: Recent published work assessed the amount of time to detect trends in atmospheric water vapor over the coming century. We address the same question and conclude that under the most optimistic scenarios and assuming perfect data (i.e., observations with no measurement uncertainty) the time to detect trends will be at least 12 years at approximately 200 hPa in the upper troposphere. Our times to detect trends are therefore shorter than those recently reported and this difference is affected by data sources used, method of processing the data, geographic location and pressure level in the atmosphere where the analyses were performed. We then consider the question of how instrumental uncertainty plays into the assessment of time to detect trends. We conclude that due to the high natural variability in atmospheric water vapor, the amount of time to detect trends in the upper troposphere is relatively insensitive to instrumental random uncertainty and that it is much more important to increase the frequency of measurement than to decrease the random error in the measurement. This is put in the context of international networks such as the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) and the Network for the Detection of Atmospheric Composition Change (NDACC) that are tasked with developing time series of climate quality water vapor data.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; Volume 116; D21118
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-05
    Description: The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.
    Keywords: Man/System Technology and Life Support
    Type: NASA Tech Briefs, August 2011; 20-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-27
    Description: Weather and climate analyses and predictions all rely on the global observing system. However, the observing system, whether atmosphere, ocean, or land surface, yields a diverse set of incomplete observations of the different components of Earth s environment. Data assimilation systems are essential to synthesize the wide diversity of in situ and remotely sensed observations into four-dimensional state estimates by combining the various observations with model-based estimates. Assimilation, or associated tools and products, are also useful in providing guidance for the evolution of the observing system of the future. This paper provides a brief overview of the global observing system and information gleaned through assimilation tools, and presents some evaluations of observing system gaps and issues.
    Keywords: Meteorology and Climatology
    Type: GSFC.CP.5994.2012 , European Center for Medium Range Weather Forecases (ECMWF) Annual Seminar; 6-9 Sept. 2011; Reading; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-19
    Description: The NASA Short-term Prediction Research and Transition (SPoRT) Center develops new products and techniques that can be used in operational meteorology. The majority of these products are derived from NASA polar-orbiting satellite imagery from the Earth Observing System (EOS) platforms. One such product is a Greenness Vegetation Fraction (GVF) dataset, which is produced from Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the new SPoRT-MODIS GVF dataset on land surface models apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. The second phase of the project is to examine the impacts of the SPoRT GVF dataset on NWP using the Weather Research and Forecasting (WRF) model. Two separate WRF model simulations were made for individual severe weather case days using the NCEP GVF (control) and SPoRT GVF (experimental), with all other model parameters remaining the same. Based on the sensitivity results in these case studies, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). The opposite was true for areas with lower GVF in the SPoRT model runs. These differences in the heating and evaporation rates produced subtle yet quantifiable differences in the simulated convective precipitation systems for the selected severe weather case examined.
    Keywords: Meteorology and Climatology
    Type: M11-0834
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-19
    Description: The DC Lightning Mapping Array (DC LMA) centered on the Washington, DC metro region has been in operation since 2006. During that time the DC LMA has provided real time data to regional National Weather Service (NSF) Sterling, VA forecast office for operations support and the NOAA Meteorological Development Laboratory (MDL) for new product development and assessment. Data from this network (as well as other from other LMA systems) are now being used to create proxy Geostationary Lightning Mapper (GLM) data sets for GOES-R risk reduction and algorithm development activities. In addition, since spring 2009 data are provided to the Storm Prediction Center in support of Hazardous Weather Testbed and GOES-R Proving Ground activities during the Spring Program. Description, status and plans will be discussed.
    Keywords: Meteorology and Climatology
    Type: M11-0555 , Southern Thunder 2011 (ST11) Workshop; Jul 11, 2011 - Jul 14, 2011; Norman, OK; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-19
    Description: Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. It is driven foremost by an extended period of reduced precipitation, but it is the impacts on such quantities as soil moisture, streamflow and crop yields that are often most important from a users perspective. While recognizing that different users have different needs for drought information, it is nevertheless important to understand that progress in predicting drought and satisfying such user needs, largely hinges on our ability to improve predictions of precipitation. This talk reviews our current understanding of the physical mechanisms that drive precipitation variations on subseasonal to decadal time scales, and the implications for predictability and prediction skill. Examples are given highlighting the phenomena and mechanisms controlling precipitation on monthly (e.g., stationary Rossby waves, soil moisture), seasonal (ENSO) and decadal time scales (PD~ and AMO).
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6074.2012 , American Geophysical Union (AGU) Fall Meeting; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-19
    Description: The Gravity Recovery and Climate Experiment (GRACE) mission provides a unique view of water cycle dynamics, enabling the only space based observations of water on and beneath the land surface that are not limited by depth. GRACE data are immediately useful for large scale applications such as ice sheet ablation monitoring, but they are even more valuable when combined with other types of observations, either directly or within a data assimilation system. Here we describe recent results of hydrological research and applications projects enabled by GRACE. These include the following: 1) global monitoring of interannual variability of terrestrial water storage and groundwater; 2) water balance estimates of evapotranspiration over several large river basins; 3) NASA's Energy and Water Cycle Study (NEWS) state of the global water budget project; 4) drought indicator products now being incorporated into the U.S. Drought Monitor; 5) GRACE data assimilation over several regions.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5815.2011 , 2011 American Geophysical Union Fall Meeting; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-19
    Description: The snow darkening effect, i.e. the reduction of snow albedo, is caused by absorption of solar radiation by absorbing aerosols (dust, black carbon, and organic carbon) deposited on the snow surface. This process is probably important over Himalayan and Tibetan glaciers due to the transport of highly polluted Atmospheric Brown Cloud (ABC) from the Indo-Gangetic Plain (IGP). This effect has been incorporated into the NASA Goddard Earth Observing System model, version 5 (GEOS-5) atmospheric transport model. The Catchment land surface model (LSM) used in GEOS-5 considers 3 snow layers. Code was developed to track the mass concentration of aerosols in the three layers, taking into account such processes as the flushing of the compounds as liquid water percolates through the snowpack. In GEOS-5, aerosol emissions, transports, and depositions are well simulated in the Goddard Chemistry Aerosol Radiation and Transport (GO CART) module; we recently made the connection between GOCART and the GEOS-5 system fitted with the revised LSM. Preliminary simulations were performed with this new system in "replay" mode (i.e., with atmospheric dynamics guided by reanalysis) at 2x2.5 degree horizontal resolution, covering the period 1 November 2005 - 31 December 2009; we consider the final three years of simulation here. The three simulations used the following variants of the LSM: (1) the original Catchment LSM with a fixed fresh snowfall density of 150 kg m-3 ; (2) the LSM fitted with the new snow albedo code, used here without aerosol deposition but with changes in density formulation and melting water effect on snow specific surface area, (3) the LSM fitted with the new snow albedo code as same as (2) but with fixed aerosol deposition rates (computed from GOCART values averaged over the Tibetan Plateau domain [Ion.: 60-120E; lat.: 20-50N] during March-May 2008) applied to all grid points at every time step. For (2) and (3), the same setting on the fresh snowfall density as in (1) was used.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5778.2011 , 2011 American Geophysical Union Fall Meeting; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-19
    Description: While fully accounting for 3D effects in Global Climate Models (GCMs) appears not realistic at the present time for a variety of reasons such as computational cost and unavailability of 3D cloud structure in the models, incorporation in radiation schemes of subgrid cloud variability described by one-point statistics is now considered feasible and is being actively pursued. This development has gained momentum once it was demonstrated that CPU-intensive spectrally explicit Independent Column Approximation (lCA) can be substituted by stochastic Monte Carlo ICA (McICA) calculations where spectral integration is accomplished in a manner that produces relatively benign random noise. The McICA approach has been implemented in Goddard's GEOS-5 atmospheric GCM as part of the implementation of the RRTMG radiation package. GEOS-5 with McICA and RRTMG can handle horizontally variable clouds which can be set via a cloud generator to arbitrarily overlap within the full spectrum of maximum and random both in terms of cloud fraction and layer condensate distributions. In our presentation we will show radiative and other impacts of the combined horizontal and vertical cloud variability on multi-year simulations of an otherwise untuned GEOS-5 with fixed SSTs. Introducing cloud horizontal heterogeneity without changing the mean amounts of condensate reduces reflected solar and increases thermal radiation to space, but disproportionate changes may increase the radiative imbalance at TOA. The net radiation at TOA can be modulated by allowing the parameters of the generalized overlap and heterogeneity scheme to vary, a dependence whose behavior we will discuss. The sensitivity of the cloud radiative forcing to the parameters of cloud horizontal heterogeneity and comparisons of CERES-derived forcing will be shown.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5773.2011 , 2011 World Climate Research Program (WCRP) Open Science Conference (OSC); Oct 24, 2011 - Oct 28, 2011; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-19
    Description: In this talk, we present observational evidence showing that the two major extremes events of the summer of 2010, i.e., the Russian heat wave and the Pakistan flood were physically connected. We find that the Pakistan flood was contributed by a series of unusually heavy rain events over the upper Indus River Basin in July-August. The rainfall regimes shifted from an episodic heavy rain regime in mid-to-late July to a steady heavy rain regime in August. An atmospheric Rossby wave associated with the development of the Russian heat wave was instrumental in spurring the episodic rain events , drawing moisture from the Bay of Bengal and the northern Arabian Sea. The steady rain regime was maintained primarily by monsoon moisture surges from the deep tropics. From experiments with the GEOS-5 forecast system, we assess the predictability of the heavy rain events associated with the Pakistan flood. Preliminary results indicate that there are significantly higher skills in the rainfall forecasts during the episodic heavy rain events in July, compared to the steady rain period in early to mid-August. The change in rainfall predictability may be related to scale interactions between the extratropics and the tropics resulting in a modulation of rainfall predictability by the circulation regimes.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5708.2011 , 2011 American Geophysical Union Fall Meeting
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-19
    Description: SeaRISE (Sea-level Response to Ice Sheet Evolution) is a community organized modeling effort, whose goal is to inform the fifth IPCC of the potential sea-level contribution from the Greenland and Antarctic ice sheets in the 21st and 22nd century. SeaRISE seeks to determine the most likely ice sheet response to imposed climatic forcing by initializing an ensemble of models with common datasets and applying the same forcing to each model. Sensitivity experiments were designed to quantify the sea-level rise associated with a change in: 1) surface mass balance, 2) basal lubrication, and 3) ocean induced basal melt. The range of responses, resulting from the multi-model approach, is interpreted as a proxy of uncertainty in our sea-level projections. http://websrv.cs .umt.edu/isis/index.php/SeaRISE_Assessment.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5703.2011 , 2011 American Geophysical Union Fall Meeting; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-19
    Description: The research purpose of the project was to determine the fate of microorganisms in space-generated solid wastes after processing by a Heat Melt Compactor (HMC), which is a candidate solid waste treatment technology. Five HMC product disks were generated at Ames Research Center (ARC), Waste Management Systems element. The feed for two was simulated space-generated trash and feed for three was Volume F compartment wet waste returned on STS 130. Conventional microbiological methods were used to detect and enumerate microorganisms in HMC disks and in surface swab samples of HMC hardware before and after operation. Also, biological indicator test strips were added to the STS trash prior to compaction to test if HMC processing conditions, 150 C for approx 3 hr and dehydration, were sufficient to eliminate the test bacteria on the strips. During sample acquisition at KSC, the HMC disk surfaces were sanitized with 70% alcohol to prevent contamination of disk interiors. Results from microbiological assays indicated that numbers of microbes were greatly reduced but not eliminated by the 70% alcohol. Ten 1.25 cm diameter cores were aseptically cut from each disk to sample the disk interior. The core material was run through the microbial characterization analyses after dispersal in sterile diluent. Low counts of viable bacteria (5 to 50 per core) were found but total direct counts were 6 to 8 orders of magnitude greater. These results indicate that the HMC operating conditions might not be sufficient for complete waste sterilization, but the vast majority of microbes present in the wastes were dead or non-cultivable after HMC treatment. The results obtained from analyses of the commercial spore test strips that had been added fo the wastes prior to HMC operation further indicated that the HMC was sterilizing the wastes. Nearly all strips were recovered from the HMC disks and all of these were negative for spore growth when run through the manufacturer's protocol. The 10(exp 6) or so spores impregnated into the strips were no longer viable. Control test strips, i.e., not exposed to the HMC conditions, were all strongly positive. All isolates from the cultivable counts were identified, leading to one concern: several were identified as Staphylococcus aureus, a human pathogen. The project reported here provides microbial characterization support to the Waste Management Systems element of the Life Support and Habitation Systems program.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2011-303 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-19
    Description: In order to produce useful proxy data for the GOES-R Geostationary Lightning Mapper (GLM) in regions not covered by VLF lightning mapping systems, we intend to employ data produced by ground-based (regional or global) VLF/LF lightning detection networks. Before using these data in GLM Risk Reduction tasks, it is necessary to have a quantitative understanding of the performance of these networks, in terms of CG flash/stroke DE, cloud flash/pulse DE, location accuracy, and CLD/CG classification error. This information is being obtained through inter-comparison with LMAs and well-quantified VLF/LF lightning networks. One of our approaches is to compare "bulk" counting statistics on the spatial scale of convective cells, in order to both quantify relative performance and observe variations in cell-based temporal trends provided by each network. In addition, we are using microsecond-level stroke/pulse time correlation to facilitate detailed inter-comparisons at a more-fundamental level. The current development status of our ground-based inter-comparison and evaluation tools will be presented, and performance metrics will be discussed through a comparison of Vaisala s Global Lightning Dataset (GLD360) with the NLDN at locations within and outside the U.S.
    Keywords: Meteorology and Climatology
    Type: M11-1395 , 2011 American Geophysical Union Fall Meeting; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-19
    Description: The primary science objective for the CHUVA lightning mapping campaign is to combine measurements of total lightning activity, lightning channel mapping, and detailed information on the locations of cloud charge regions of thunderstorms with the planned observations of the CHUVA (Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement) field campaign. The lightning campaign takes place during the CHUVA intensive observation period October-December 2011 in the vicinity of S o Luiz do Paraitinga with Brazilian, US, and European government, university and industry participants. Total lightning measurements that can be provided by ground-based regional 2-D and 3-D total lightning mapping networks coincident with overpasses of the Tropical Rainfall Measuring Mission Lightning Imaging Sensor (LIS) and the SEVIRI (Spinning Enhanced Visible and Infrared Imager) on the Meteosat Second Generation satellite in geostationary earth orbit will be used to generate proxy data sets for the next generation US and European geostationary satellites. Proxy data, which play an important role in the pre-launch mission development and in user readiness preparation, are used to develop and validate algorithms so that they will be ready for operational use quickly following the planned launch of the GOES-R Geostationary Lightning Mapper (GLM) in 2015 and the Meteosat Third Generation Lightning Imager (LI) in 2017. To date there is no well-characterized total lightning data set coincident with the imagers. Therefore, to take the greatest advantage of this opportunity to collect detailed and comprehensive total lightning data sets, test and validate multi-sensor nowcasting applications for the monitoring, tracking, warning, and prediction of severe and high impact weather, and to advance our knowledge of thunderstorm physics, extensive measurements from lightning mapping networks will be collected in conjunction with electric field mills, field change sensors, high speed cameras and other lightning sensors, dual-polarimetric radars, and aircraft in-situ microphysics which will allow for excellent cross-network inter-comparisons, assessments, and physical understanding.
    Keywords: Meteorology and Climatology
    Type: M11-1394 , 2011 American Geophysical Union Fall Meeting; Dec 05, 2011 - Dec 08, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-19
    Description: On April 27, 2011, the southeastern United States was raked with several episodes of severe weather. Numerous tornadoes caused extensive damage, and tragically, the deaths of over 300 people. In Alabama alone, there were 61 confirmed tornados, 4 of them produced EF5 damage, and several were on the ground an hour or more with continuous damage tracks exceeding 80km. The use of Doppler radars covering the region provided reflectivity and velocity signatures that allowed forecasters to monitors the severe storms from beginning to end issuing hundreds of severe weather warnings throughout the day. Meteorologists from the the NWS performed extensive surveys to assess the intensity, duration, and ground track of tornadoes reported during the event. Survey activities included site visits to the affected locations, analysis of radar and satellite data, aerial surveys, and interviews with eyewitnesses. Satellite data from NASA's MODIS and ASTER instruments played a helpful role in determining the location of tornado damage paths and in the assessment. High resolution multispectral and temporal composites helped forecasters corroborate their damage assessments, determine starting and ending points for tornado touchdowns, and helped to provide forecasters with a better big-picture view of the damage region. The imagery also helped to separate damage from the April 27th tornados from severe weather that occurred earlier that month. In a post analysis of the outbreak, tornado damage path signatures observed in the NASA satellite data have been correlated to "debris ball" signatures in the NWS Doppler radars and a special ARMOR dual-polarization radar operated by the University of Alabama Huntsville during the event. The Doppler radar data indicates a circular enhanced reflectivity signal and rotational couplet in the radial velocity likely associated with the tornado that is spatially correlated with the damage tracks in the observed satellite data. An algorithm to detect and isolate the "debris ball" from precipitation signatures in the dual polarization radar data has been developed and verified using the NASA damage track data.
    Keywords: Meteorology and Climatology
    Type: M11-0946 , 2011 AGU Fall Meeting; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-19
    Description: The next generation geostationary satellite, GOES-R, will carry two new instruments with unique atmospheric and surface observing capabilities, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM), to study short-term weather processes. The ABI will bring enhanced multispectral observing capabilities with frequent refresh rates for regional and full disk coverage to geostationary orbit to address many existing and new forecast challenges. The GLM will, for the first time, provide the continuous monitoring of total lightning flashes over a hemispherical region from space. NOAA established the GOES-R Proving Ground activity several years ago to demonstrate the new capabilities of these instruments and to prepare forecasters for their day one use. Proving Ground partners work closely with algorithm developers and the end user community to develop and transition proxy data sets representing GOES-R observing capabilities. This close collaboration helps to maximize refine algorithms leading to the delivery of a product that effectively address a forecast challenge. The NASA Short-term Prediction Research and Transition (SPoRT) program has been a participant in the NOAA GOES-R Proving Ground activity by developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the SPoRT program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. Participation in the Proving Ground activities extends SPoRT s activities and taps its experience and expertise in diagnostic weather analysis, short-term weather forecasting, and the transition of research and experimental data to operational decision support systems like NAWIPS, AWIPS, AWIPS2, and Google Earth. Recent SPoRT Proving Ground activities supporting the development and use of a pseudo GLM total lightning product and the transition of the AWG s Convective Initiation (CI) product, both of which were available in AWIPS and AWIPS II environments, by forecasters during the Hazardous Weather Testbed (HWT) Spring Experiment. SPoRT is also providing a suite of SEVIRI and MODIS RGB image products, and a high resolution composite SST product to several National Centers for use in there ongoing demonstration activities. Additionally, SPoRT has involved numerous WFOs in the evaluation of a GOES-MODIS hybrid product which brings ABI-like data sets in front of the forecaster for everyday use. An overview of this activity will be presented at the conference.
    Keywords: Meteorology and Climatology
    Type: M11-0942 , American Geophysical Union Fall Meeting 2011; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-19
    Description: Dual tipping bucket gauges were operated at 16 sites in support of ground based precipitation measurements during Mid-latitude Continental Convective Clouds Experiment (MC3E). The experiment is conducted in North Central Oklahoma from April 22 through June 6, 2011. The gauge sites were distributed around Atmospheric Radiation Measurement (ARM) Climate Research facility where the minimum and maximum separation distances ranged from 1 to 12 km. This study investigates the rainfall variability by employing the stretched exponential function. It will focus on the quantitative assessment of the partial beam of the experiment area in both convective and stratiform rain. The parameters of the exponential function will also be determined for various events. This study is unique for two reasons. First is the existing gauge setup and the second is the highly convective nature of the events with rain rates well above 100 mm/h for 20 minutes. We will compare the findings with previous studies.
    Keywords: Meteorology and Climatology
    Type: M11-0941
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-19
    Description: The planned GOES-R Geostationary Lightning Mapper (GLM) will provide total lightning data on the location and intensity of thunderstorms over a hemispheric spatial domain. Ongoing GOES-R research activities are demonstrating the utility of total flash rate trends for enhancing forecasting skill of severe storms. To date, GLM total lightning proxy trends have been well served by ground-based VHF systems such as the Northern Alabama Lightning Mapping Array (NALMA). The NALMA (and other similar networks in Washington DC and Oklahoma) provide high detection efficiency (〉 90%) and location accuracy (〈 1 km) observations of total lightning within about 150 km from network center. To expand GLM proxy applications for high impact convective weather (e.g., severe, aviation hazards), it is desirable to investigate the utility of additional sources of continuous lightning that can serve as suitable GLM proxy over large spatial scales (order 100 s to 1000 km or more), including typically data denied regions such as the oceans. Potential sources of GLM proxy include ground-based long-range (regional or global) VLF/LF lightning networks such as the relatively new Vaisala Global Lightning Dataset (GLD360) and Weatherbug Total Lightning Network (WTLN). Before using these data in GLM research applications, it is necessary to compare them with LMAs and well-quantified cloud-to-ground (CG) lightning networks, such as Vaisala s National Lightning Detection Network (NLDN), for assessment of total and CG lightning location accuracy, detection efficiency and flash rate trends. Preliminary inter-comparisons from these lightning networks during selected severe weather events will be presented and their implications discussed.
    Keywords: Meteorology and Climatology
    Type: M11-0889 , American Geophysical Union Fall Meeting 2011; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-19
    Description: The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation s activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: How do we know that there is a changing climate and how is it expected to change in the future? Are important climate impacts and opportunities occurring or predicted to occur in the future? Are we adapting successfully? What are the vulnerabilities and resiliencies given a changing climate? Are we preparing adequately for extreme events? It is not expected that the NCA societal indicators would be linked directly to a single decision or portfolio of decisions, but subsets of indicators, or the data supporting the indicator, might be used to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region.
    Keywords: Meteorology and Climatology
    Type: M11-1127 , 2011 American Geophysical Union (AGU) Fall Meeting; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-19
    Description: We use the Polar Wind Outflow Model (PWOM) to study the geomagnetically quiet conditions in the polar cap during solar maximum, The PWOM solves the gyrotropic transport equations for O(+), H(+), and He(+) along several magnetic field lines in the polar region in order to reconstruct the full 3D solution. We directly compare our simulation results to the data based empirical model of Kitamura et al. [2011] of electron density, which is based on 63 months of Akebono satellite observations. The modeled ion and electron temperatures are also compared with a statistical compilation of quiet time data obtained by the EISCAT Svalbard Radar (ESR) and Intercosmos Satellites (Kitamura et al. [2011]). The data and model agree reasonably well. This study shows that photoelectrons play an important role in explaining the differences between sunlit and dark results, ion composition, as well as ion and electron temperatures of the quiet time polar wind solution. Moreover, these results provide validation of the PWOM's ability to model the quiet time ((background" solution.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5711.2011 , 2011 American Geophysical Union Fall Meeting; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-19
    Description: Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty module in NASA's Land Information System (LIS-OPT), whereby parameter sets are calibrated in the Noah land surface model and classified according to the land cover and soil type mapping of the observations and the full domain. The impact of the calibrated parameters on the a) spin up of land surface states used as initial conditions, and b) heat and moisture fluxes of the coupled (LIS-WRF) simulations are then assessed in terms of ambient weather, PBL budgets, and precipitation along with L-A coupling diagnostics. In addition, the sensitivity of this approach to the period of calibration (dry, wet, normal) is investigated. Finally, tradeoffs of computational tractability and scientific validity (e.g.,. relating to the representation of the spatial dependence of parameters) and the feasibility of calibrating to multiple observational datasets are also discussed.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5618.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-19
    Description: Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5661.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-19
    Description: In this presentation, we provide updates on CCMC modeling activities, CCMC metrics and validation studies, and other CCMC efforts. In addition, an overview of GSFC Space Weather Services (a sibling organization to the Community Coordinated Modeling Center) and its products/capabilities will be given. We show how some of the research grade models, if running in an operational mode, can help address NASA's space weather needs by providing forecasting/now casting capabilities of significant space weather events throughout the solar system.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5383.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-19
    Description: Tropical anvil clouds play important roles in redistributing energy, water in the troposphere. Interacting with dynamics at a wide range of spatial and temporal scales, they can become organized internally and form structured cells, transporting momentum vertically and laterally. To quantify small-scale structures inside cirrus and anvils, we study view-dependence of the cloud-induced radiance from Atmospheric Infrared Sounder (AIRS) using channels near CO2 absorption line. The analysis of tropical eight-year (30degS-30degN, 2003-2010) data suggests that AIRS east-views observe 10% more anvil clouds than westviews during day (13:30 LST), whereas east-views and westviews observe equally amount of clouds at midnight (1 :30 LST). For entire tropical averages, AIRS oblique views observe more anvils than the nadir views, while the opposite is true for deep convective clouds. The dominance of cloudiness in the east-view cannot be explained by AIRS sampling and cloud microphysical differences. Tilted and banded anvil structures from convective scale to mesoscale are likely the cause of the observed view-dependent cloudiness, and gravity wave-cloud interaction is a plausible explanation for the observed structures. Effects of the tilted and banded cloud features need to be further evaluated and taken into account potentially in large-scale model parameterizations because of the vertical momentum transport through cloud wave breaking.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5373.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-19
    Description: Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5367.2011 , 10th AeroComp Workshop; Oct 03, 2011 - Oct 06, 2011; Fukuoka; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-19
    Description: Over the past several years, NASA has realized tremendous progress in Extravehicular Activity (EVA) technology development. This has been evidenced by the progressive development of a new Rapic Cycle Amine (RCA) system for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support Subsystem (PLSS). The PLSS is responsible for the life support of the crew member in the spacesuit. The RCA technology is responsible for carbon dioxide (CO2) and humidity control. Another aspect of the RCA is that it is on-back vacuum-regenerable, efficient, and reliable. The RCA also simplifies the PLSS schematic by eliminating the need for a condensing heat exchanger for humidity control in the current EMU. As development progresses on the RCA, it is important that the sizing be optimized so that the demand on the PLSS battery is minimized. As well, maintaining the CO2 washout at adequate levels during an EVA is an absolute requirement of the RCA and associated ventilation system. Testing has been underway in-house at NASA Johnson Space Center and analysis has been initiated to evaluate whether the technology provides exemplary performance in ensuring that the CO2 is removed sufficiently enough and the ventilation flow is adequate enough to maintain CO2 1 Project Engineer, Space Suit and Crew Survival Systems Branch, Crew and Thermal Systems Division, 2101 NASA Parkway, Houston, TX 77058/EC5. washout in the AEMU spacesuit helmet of the crew member during an EVA. This paper will review the recent developments of the RCA unit, the testing results performed in-house with a spacesuit simulator, and the associated analytical work along with insights from the medical aspect on the testing.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25300 , International Conference on Environmental Systems (ICES); Jul 15, 2011 - Jul 19, 2011; San DIego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners activities on them, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028. 1
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25282 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-19
    Description: The Beaufort and East Siberian Sea (BESS) shows a large increase in surface air temperature (SAT) in the recent decade for months of Sep-Nov, and NASA's Terra satellite have provided valuable measurements for this important decade of the intensified Arctic warming. In particular, MISR data since 2000 and CALIPSO cloud measurements since 2006 reveal a significant increase of low cloud cover in October, which is largest in the daylight Arctic months (March-October). Causes of the warming remain unclear; but increased absorption of summer solar radiation and autumn low cloud formation have been suggested as a positive ice-temperature-cloud feedback in the Arctic. The observed increase of low cloud cover supports the theorized positive ice-temperature-cloud feedback, whereby more open water in the Arctic Ocean increases summer absorption of solar radiation, and subsequent evaporation, which leads to more low clouds in autumn. Trapping longwave radiation, these clouds effectively lengthen the melt season and reduce perennial ice pack formation, making sea ice more vulnerable to the next melt season
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5372.2011 , 2011 International Arctic Scientific Science Committee (IASC) Atmosphere Working Group Workshop on Arctic Measurements; Sep 26, 2011 - Sep 27, 2011; Potsdam; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-19
    Description: Atmospheric aerosols represent one of the greatest uncertainties in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood, there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource, an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, TerraMISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MA~SS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5368.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: In support of the Urine Processor Assembly Precipitation Prevention Project (UPA PPP), multiple technologies were explored to prevent CaSO4 dot 2H2O (gypsum) precipitation during the on-orbit distillation process. Gypsum precipitation currently limits the water recovery rate onboard the International Space Station (ISS) to 70% versus the planned 85% target water recovery rate. Due to its advanced performance in removing calcium cations in pretreated augmented urine (PTAU), ion exchange was selected as one of the technologies for further development by the PPP team. A total of 12 ion exchange resins were evaluated in various equilibrium and dynamic column tests with solutions of dissolved gypsum, urine ersatz, PTAU, and PTAU brine at 85% water recovery. While initial evaluations indicated that the Purolite SST60 resin had the highest calcium capacity in PTAU (0.30 meq/mL average), later tests showed that the Dowex G26 and Amberlite FPC12H resins had the highest capacity (0.5 meq/mL average). Further dynamic column testing proved that G26 performance is +/- 10% of that value at flow rates of 0.45 and 0.79 Lph under continuous flow, and 10.45 Lph under pulsed flow. Testing at the Marshall Spaceflight Center (MSFC) integrates the ion exchange technology with a UPA ground article under flight-like pulsed flow conditions with PTAU. To date, no gypsum precipitation has taken place in any of the initial evaluations.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25303 , International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) Urine Processor Assembly (UPA) experienced a hardware failure in the Distillation Assembly (DA) in October 2010. Initially the UPA was operated to recover 85% of the water from urine through distillation, concentrating the contaminants in the remaining urine. The DA failed due to precipitation of calcium sulfate (gypsum) which caused a loss of UPA function. The ISS UPA operations have been modified to only recover 70% of the water minimizing gypsum precipitation risk but substantially increasing water resupply needs. This paper describes the feasibility assessment of several technologies (ion exchange, chelating agents, threshold inhibitors, and Lorentz devices) to prevent gypsum precipitation. The feasibility assessment includes the development of assessment methods, chemical modeling, bench top testing, and validation testing in a flight-like ground UPA unit. Ion exchange technology has been successfully demonstrated and has been recommended for further development. The incorporation of the selected technology will enable water recovery to be increased from 70% back to the original 85% and improve the ISS water balance.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25233 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) Crew Quarters (CQ) is a permanent personal space for crewmembers to sleep, perform personal recreation and communication, as well as provide on-orbit stowage of personal belongings. The CQs provide visual, light, and acoustic isolation for the crewmember. Over a two year period, four CQs were launched to the ISS and currently reside in Node 2. Since their deployment, all CQs have been occupied and continue to be utilized. After four years on-orbit, this paper will review failures that have occurred and the investigations that have resulted in successful on-orbit operations. This paper documents the on-orbit performance and sustaining activities that have been performed to maintain the integrity and utilization of the CQs.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25201 , International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) has been designed as a laboratory for demonstrating technologies in a microgravity environment, benefitting exploration programs by reducing the overall risk of implementing such technologies in new spacecraft. At the beginning of fiscal year 2010, the ISS program manager requested that the amine-based, pressure-swing carbon dioxide and humidity absorption technology (designed by Hamilton Sundstrand, baselined for the ORION Multi-Purpose Crew Vehicle, and tested at the Johnson Space Center in relevant environments, including with humans, since 2005) be developed into a payload for ISS Utilization. In addition to evaluating the amine technology in a flight environment before the first launch of the ORION vehicle, the ISS program wanted to determine the capability of the amine technology to remove carbon dioxide from the ISS cabin environment at the metabolic rate of the full 6-person crew. Because the amine technology vents the absorbed carbon dioxide and water vapor to space vacuum (open loop), additional hardware needed to be developed to minimize the amount of air and water resources lost overboard. Additionally, the payload system would be launched on two separate Space Shuttle flights, with the heart of the payload the swingbed unit itself launching a full year before the remainder of the payload. This paper discusses the project management and challenges of developing the amine swingbed payload in order to accomplish the technology objectives of both the open-loop ORION application as well as the closed-loop ISS application.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25173 , International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego,CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: Equivalent System Mass (ESM) and reliability estimates were performed for different life support architectures based primarily on International Space Station (ISS) technologies. The analysis was applied to a hypothetical 1-year deep-space mission. High-level fault trees were initially developed relating loss of life support functionality to the Loss of Crew (LOC) top event. System reliability was then expressed as the complement (nonoccurrence) this event and was increased through the addition of redundancy and spares, which added to the ESM. The reliability analysis assumed constant failure rates and used current projected values of the Mean Time Between Failures (MTBF) from an ISS database where available. Results were obtained showing the dependence of ESM on system reliability for each architecture. Although the analysis employed numerous simplifications and many of the input parameters are considered to have high uncertainty, the results strongly suggest that achieving necessary reliabilities for deep-space missions will add substantially to the life support system mass. As a point of reference, the reliability for a single-string architecture using the most regenerative combination of ISS technologies without unscheduled replacement spares was estimated to be less than 1%. The results also demonstrate how adding technologies in a serial manner to increase system closure forces the reliability of other life support technologies to increase in order to meet the system reliability requirement. This increase in reliability results in increased mass for multiple technologies through the need for additional spares. Alternative parallel architecture approaches and approaches with the potential to do more with less are discussed. The tall poles in life support ESM are also reexamined in light of estimated reliability impacts.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25165 , International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-19
    Description: An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25158 , International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-19
    Description: ABSTRACT Many physiological factors, such as spinal elongation, fluid shifts, bone atrophy, and muscle loss, occur during an exposure to a microgravity environment. Spinal elongation is just one of the factors that can also affect the safety and performance of a crewmember while in space. Spinal elongation occurs due to the lack of gravity/compression on the spinal column. This allows for the straightening of the natural spinal curve. There is a possible fluid shift in the inter-vertebral disks that may also result in changes in height. This study aims at collecting the overall change in seated height for crewmembers exposed to a microgravity environment. During previous Programs, Apollo-Soyuz Test Project (ASTP) and Skylab, spinal elongation data was collected from a small number of subjects in a standing posture but were limited in scope. Data from these studies indicated a quick increase in stature during the first few days of weightlessness, after which stature growth reached a plateau resulting in up to a 3% increase of the original measurement [1-5]. However, this data was collected only for crewmembers in standing posture and not in a seated posture. Seated height may have a different effect than standing height due to a change in posture as well as due to a compounded effect of wearing restraints and a potential compression of the gluteal area. Seated height was deemed as a critical measurement in the design of the Constellation Program s (CxP) Crew Exploration Vehicle (CEV), called Orion which is now the point-of-departure vehicle for the Multi-Purpose Crew Vehicle (MPCV) Program; therefore a better understanding of the effects of microgravity on seated height is necessary. Potential changes in seated height that may not have impacted crew accommodation in previous Programs will have significant effects on crew accommodation due to the layout of seats in the Orion.. The current and existing configuration is such that the four crewmembers are stacked two by two with the commander and pilot seats on the top and the two remaining seats underneath, thereby limiting the amount of clearance for the crewmembers seated in the bottom seat. The inner mold line of these types of vehicles are fixed due to other design constraints; therefore, it is essential that all seats incorporate additional clearance to account for adequate spinal growth thereby ensuring that the crew can safely ingress the seat and be strapped in prior to its return to earth. If there is not enough clearance to account for spinal growth deltas between seats then there is the potential that crewmembers will not be able to comfortably and safely fit into their seats. The crewmember in the bottom stacked seat may even have negative clearance with the seat above him or her which could lead to potential ingress/egress issues or potentially injury of the crewmember during landing. These impacts are specific to these types of vehicles with stacked seat configuration. Without proper knowledge of the amount of spinal elongation, or growth, which occurs due to microgravity and space flight, the design of future vehicle(s) or suits may cause injury, discomfort, and limit crew accommodation and crew complements. The experiment primarily aimed to collect seated height data for subjects exposed to microgravity environments, and feed new information regarding the effect of elongation of the spine forward into the design of the Orion. The data collected during the experiment included, two seated height measurement and two digital pictures of seated height pre-, in-, and post-flight. In addition to seated height, crewmembers had an optional task of collecting stature , standing height. Seated height data was obtained from 29 crewmembers that included 8 ISS increment crew (2 females and 6 males) and 21 Shuttle crew (1 female, 20 males), and whose mean age was 48 years ( 4 years). This study utilized the last six Shuttle flights, STS-128 to STS-134. The results show that partipating crewmembers experienced growth up to 6% in seated height and up to 3% in stature. Based on the worst case statistical analysis of the subject data, the recommended seated height growth of 6% will be provided to the designers as the necessary seated height adjustment.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25133 , NASA Human Research Program Investigators'' Workshop; Feb 14, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-19
    Description: Through the Advanced Exploration Systems Program, NASA is attempting to use the vast collection of space suit mobility data from 50 years worth of space suit testing to build predictive analysis tools to aid in early architecture decisions for future missions and exploration programs. However, the design engineers must first understand if and how data generated by different methodologies can be compared directly and used in an essentially interchangeable manner. To address this question, the isolated joint range of motion data from two different test series were compared. Both data sets were generated from participants wearing the Mark III Space Suit Technology Demonstrator (MK-III), Waist Entry I-suit (WEI), and minimal clothing. Additionally the two tests shared a common test subject that allowed for within subject comparisons of the methods that greatly reduced the number of variables in play. The tests varied in their methodologies: the Space Suit Comparative Technologies Evaluation used 2D photogrammetry to analyze isolated ranges of motion while the Constellation space suit benchmarking and requirements development used 3D motion capture to evaluate both isolated and functional joint ranges of motion. The isolated data from both test series were compared graphically, as percent differences, and by simple statistical analysis. The results indicated that while the methods generate results that are statistically the same (significance level p= 0.01), the differences are significant enough in the practical sense to make direct comparisons ill advised. The concluding recommendations propose direction for how to bridge the data gaps and address future mobility data collection to allow for backward compatibility.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25038 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-19
    Description: The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates from a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Soil moisture skill is measured against in situ observations in the continental United States at 44 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at four CalVal watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite estimates. The average skill (in terms of the anomaly time series correlation coefficient R) of AMSR-E retrievals is R=0.39 versus SCAN and R=0.53 versus CalVal measurements. The skill of MERRA surface and root-zone soil moisture is R=0.42 and R=0.46, respectively, versus SCAN measurements, and MERRA surface moisture skill is R=0.56 versus CalVal measurements. Adding information from either precipitation observations or soil moisture retrievals increases surface soil moisture skill levels by IDDeltaR=0.06-0.08, and root zone soil moisture skill levels by DeltaR=0.05-0.07. Adding information from both sources increases surface soil moisture skill levels by DeltaR=0.13, and root zone soil moisture skill by DeltaR=0.11, demonstrating that precipitation corrections and assimilation of satellite soil moisture retrievals contribute similar and largely independent amounts of information.
    Keywords: Meteorology and Climatology
    Type: American Meteorological Society (AMS) Annual Meeting; Jan 23, 2011 - Jan 27, 2011; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: Under NASA's MEaSUREs program for creating long term multi-instrument data sets, our group at Goddard has re-processed ozone profile data from a series of SBUV instruments. We have processed data from the Nimbus 7 SBUV instrument (1979-1990) and data from SBUV/2 instruments on NOAA-9 (1985-1998), NOAA-11 (1989-1995), NOAA-16 (2001-2010), NOAA-17 (2002-2010), and NOAA-18 (2005-2010). This reprocessing uses the version 8 ozone profile algorithm but now uses the Brion, Daumont, and Malicet (BMD) ozone cross sections instead of the Bass and Paur cross sections. The new cross sections have much better resolution, and extended wavelength range, and a more consistent temperature dependence. The re-processing also uses an improved cloud height climatology based on the Raman cloud retrievals of OMI. Finally, the instrument-to-instrument calibration is set using matched scenes so that ozone diurnal variation in the upper stratosphere does not alias into the ozone trands. Where there is no instrument overlap, SAGE and MLS are used to estimate calibration offsets. Preliminary analysis shows a more coherent time series as a function of altitude. The net effect on profile total column ozone is on average an absolute reduction of about one percent. Comparisons with ground-based systems are significantly better at high latitudes.
    Keywords: Meteorology and Climatology
    Type: WMO (World Meteorological Organization) Workshop on Ozone Profiles; Jan 25, 2011 - Jan 27, 2011; Geneva; Switzerland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: NASA's STEREO (Solar TErrestrial RElations Observatory) mission consists of two nearly identical spacecraft hosting an array of in situ and imaging instruments for studying the sun and heliosphere. Launched in 2885 and in orbit about the Sun near 1 AU, the spacecraft are now swinging towards the farside of the sun. I will provide the latest information with regards to STEREO space weather data and also recent STEREO research.
    Keywords: Meteorology and Climatology
    Type: Space Weather Workshop; Apr 26, 2011 - Apr 29, 2011; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-19
    Description: A deep-focusing time-distance measurement technique has been applied to linear acoustic simulations of a solar interior perturbed by convective flows. The simulations are for the full sphere for r/R greater than 0.2. From these it is straightforward to simulate the observations from different viewing angles and to test how multiple viewing angles enhance detectibility. Some initial results will be presented.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-19
    Description: Crowd sourcing may be defined as the act of outsourcing tasks that are traditionally performed by an employee or contractor to an undefined, generally large group of people or community (a crowd) in the form of an open call. The open call may be issued by an organization wishing to find a solution to a particular problem or complete a task, or by an open innovation service provider on behalf of that organization. In 2008, the Space Life Sciences Directorate (SLSD), with the support of Wyle Integrated Science and Engineering, established and implemented pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical challenges. These unsolved technical problems were converted to problem statements, also called "Challenges" or "Technical Needs" by the various open innovation service providers, and were then posted externally to seek solutions. In addition, an open call was issued internally to NASA employees Agency wide (10 Field Centers and NASA HQ) using an open innovation service provider crowd sourcing platform to post NASA challenges from each Center for the others to propose solutions). From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external problems or challenges were posted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive crowd sourcing platform designed for internal use by an organization. This platform was customized for NASA use and promoted as NASA@Work. The results were significant. Of the seven InnoCentive external challenges, two full and five partial awards were made in complex technical areas such as predicting solar flares and long-duration food packaging. Similarly, the TopCoder challenge yielded an optimization algorithm for designing a lunar medical kit. The Yet2.com challenges yielded many new industry and academic contacts in bone imaging, microbial detection and even the use of pharmaceuticals for radiation protection. The internal challenges through NASA@Work drew over 6000 participants across all NASA centers. Challenges conducted by each NASA center elicited ideas and solutions from several other NASA centers and demonstrated rapid and efficient participation from employees at multiple centers to contribute to problem solving. Finally, on January 19, 2011, the SLSD conducted a workshop on open collaboration and innovation strategies and best practices through the newly established NASA Human Health and Performance Center (NHHPC). Initial projects will be described leading to a new business model for SLSD.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-22956 , 62nd International Astronautical Congress; Oct 03, 2011 - Oct 07, 2011; Capt Town,; South Africa
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-19
    Description: Warm pool El Nino (WPEN) events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific in austral spring and summer. Previous work found an enhancement in planetary wave activity in the South Pacific in austral spring, and a warming of 3-5 K in the Antarctic lower stratosphere during austral summer, in WPEN events as compared with ENSO neutral. In this presentation, we show that weakening of the Antarctic vortex during WPEN affects the structure and magnitude of high-latitude total ozone. We use total ozone data from TOMS and OMI, as well as station data from Argentina and Antarctica, to identify shifts in the longitudinal location of the springtime ozone minimum from its climatological position. In addition, we examine the sensitivity of the WPEN-related ozone response to the phase of the quasi-biennial oscillation (QBO). We then compare the observed response to WPEN events with Goddard Earth Observing System chemistry-climate model, version 2 (GEOS V2 CCM) simulations. Two, 50-year time-slice simulations are forced by annually repeating SST and sea ice climatologies, one set representing observed WPEN events and the second set representing neutral ENSO events, in a present-day climate. By comparing the two simulations, we isolate the impact of WPEN events on lower stratospheric ozone, and furthermore, examine the sensitivity of the WPEN ozone response to the phase of the QBO.
    Keywords: Meteorology and Climatology
    Type: WCRP Open Science Conference; Oct 24, 2011 - Oct 28, 2011; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-19
    Description: Snow conditions on the land surface are recognized to be key components of the global hydrological cycle as they play a critical role in the determination of local and regional climate. In many mid-latitude and high-latitude regions, the seasonal water storage and associated spring snowmelt dominate the local hydrology. The contribution to the runoff and moisture conditions from snow is vital in supporting agriculture and in determining water resources management practices. Consequently, accurate characterization of snow properties becomes important for both end-use applications and weather and climate research. Recently a joint effort between the u.S. Air Force and NASA has enabled a blended, multi-sensor snow product known as the AFWA NASA Snow Algorithm (ANSA). This global snow dataset has been generated by utilizing the Earth Observation System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E) datasets. ANSA product includes estimates of snow cover extent, snow water equivalent (SWE) and SWE-derived snow depth fields. The MODIS-based products enable snow cover mappings under cloud-free conditions whereas the passive microwave data from AMSR-E provides measurements under cloudy conditions. These remotely-sensed snow observations are further augmented with the information from ground-based snow measurements through data fusion techniques. The resulting ANSA products are employed in the NASA Land Information System (LIS) data assimilation framework, which provides a comprehensive environment for integrating community land surface models, ground and satellite-based observations, and ensemble-based data assimilation tools. LIS incorporates the multisensor ANSA snow retrievals with the land surface model estimates to generate spatially and temporally continuous estimates of snow states, through data assimilation. A suite of experiments to assimilate ANSA snow cover, SWE and snow depth estimates with different land surface models in LIS are conducted and the resulting estimates of snow conditions are evaluated against a number of in-situ observational datasets, over several regions of the world. These evaluations are used to compare and contrast the advantages and disadvantages of these multi-sensor snow observations.
    Keywords: Meteorology and Climatology
    Type: European Geophysical Union General Assembly; Apr 04, 2011 - Apr 13, 2011; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-19
    Description: Lightning-NO emissions are responsible for 15-30 ppbv enhancements in upper tropospheric ozone over the eastern United States during the summer time. Enhancements vary from year to year but were particularly large during the summer of 2006, a period during which meteorological conditions were particularly conducive to ozone formation. A lightning-NO parameterization has been developed that can be used with the CMAQ model. Lightning-NO emissions in this scheme are assumed to be proportional to convective precipitation rate and scaled so that monthly average flash rates in each grid box match National Lightning Detection Network (NLDN) observed flash rates after adjusting for climatological intracloud to cloud-to-ground (IC/CG) ratios. The contribution of lightning-NO emissions to eastern United States NOx and ozone distributions during the summer of 2006 will be evaluated by comparing results of 12- km CMAQ simulations with and without lightning-NO emissions to measurements from the IONS field campaign and to satellite retrievals from the Tropospheric Emission Spectrometer (TES) and the Ozone Monitoring Instrument (OMI) aboard the Aura satellite. Special attention will be paid to the impact of the assumed vertical distribution of emissions on upper tropospheric NOx and ozone amounts.
    Keywords: Meteorology and Climatology
    Type: M10-1010 , 91st American Meteorological Society (AMS) Annual Meeting; Jan 23, 2011 - Jan 27, 2011; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-19
    Description: Several candidate advanced pressure bladder membrane materials have been developed for NASA Johnson Space Center by DSM Biomedical for selective permeability of carbon dioxide and water vapor. These materials were elasthane and two other formulations of thermoplastic polyether polyurethane. Each material was tested in two thicknesses for permeability to carbon dioxide, oxygen and water vapor. Although oxygen leaks through the suit bladder would amount to only about 60 cc/hr in a full size suit, significant amounts of carbon dioxide would not be rejected by the system to justify its use. While the ratio of carbon dioxide to oxygen permeability is about 48 to 1, this is offset by the small partial pressure of carbon dioxide in acceptable breathing atmospheres of the suit. Humidity management remains a possible use of the membranes depending on the degree to which the water permeability is inhibited by cations in the sweat. Tests are underway to explore cation fouling from sweat.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-22044 , 41st International Conference on Environmental Systems (ICES); Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: NASA Sounder Science Team Meeting; Nov 08, 2011 - Nov 11, 2011; Greenbelt, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: This paper approaches the noise versus resolution trade-off in wind scatterometry from a field-wise retrieval perspective. Theoretical considerations are discussed and practical implementation using a MAP estimator is applied to the Sea-Winds scatterometer. The approach is compared to conventional approaches as well as numerical weather predictions. The new approach incorporates knowledge of the wind spectrum to reduce the impact of components of the wind signal that are expected to be noisy.
    Keywords: Meteorology and Climatology
    Type: IEEE International Geoscience and Remote Sensing Symposium, (IGARSS 2011); Jul 24, 2011 - Jul 29, 2011; Vancouver, BC; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: Ice Sheet System Model (ISSM) 2011 Workshop; Dec 12, 2011 - Dec 13, 2011; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: Under NASA's Earth Science Technology Program, a novel mission concept has been developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit: "NEXRAD in Space" (NIS). By operating in the Geostationary Earth Orbit (GEO), NIS would enable rapid-update sampling (less than or equal to 1 hour cadence) of three dimenional fields of 35 GHz (Ka-band) radar reflectivity factor (Z) and line-of-sight Doppler velocity (VD) profiles, at mesoscale horizontal resolutions (approx. 10 km) over a circular Earth region of approximately 5300 km in diameter (equivalent to much of an oceanic basin, such as the Atlantic). NIS GEO-radar concept was chosen as one of only four potential post-2020 missions for the Weather Focus area in the 2007-2016 NASA Science Mission Directorate (SMD) Science Plan. The results of the first project aiming at developing the NIS concept highlighted the enormous potential of such mission, and the technological challenges presented by it. In essence, it is because of its rapid-cadence capability that NIS science planning is focusing on hurricane monitoring and prediction. Hurricanes, or generically tropical cyclones (TCs), have always been among the most devastating natural phenomena. This has been painfully reiterated in recent years with a number of powerful TCs landfalling in North America and elsewhere. In April 2007, the first NIS Science Workshop was convened at the University of Miami to galvanize the scientific community's interest in NIS's measurement capabilities for improved TC monitoring and prediction. The general consensus of the workshop was that a GEO Doppler radar would provide a major breakthrough in regards to the observation of TCs, and, when combined with cloud-resolving numerical weather prediction (NWP) models. This paper presents brief summaries of the instrument concept, the current technology status, the anticipated impacts on hurricane monitoring and model prediction, and the future science and technology roadmap.
    Keywords: Meteorology and Climatology
    Type: Advanced RF Sensors and Remote Sensing Instruments (ARSI); Sep 13, 2011 - Sep 15, 2011; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: Short Course on Millimeter Wavelength Radars Spaceborne Cloud and Precipitation Radar Applications; Sep 25, 2011; Pittsburgh, PA; United States|Conference on Radar Meteorology; Sep 26, 2011 - Sep 30, 2011; Pittsburgh, PA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: NASA Engineers design spacesuits for ultimate protection and functionality in the extreme environment of space. The spacesuit is often referred to as a "personal spacecraft" because it provides the astronaut with everything he or she needs to survive and work in space outside of the vehicle or habitat. The systems within the spacesuit include the pressure garment system (PGS), the Portable Life Support System (PLSS), and the power, avionics, and software (PAS) system. These elements are necessary to protect crewmembers and allow them to work effectively in the pressure and temperature extremes of space environments. Development of the spacesuit system is necessary to support future human extravehicular exploration activities to Lunar, Martian, microgravity, and possibly other space destinations. Although all the systems that makeup the space suit are important, the PLSS is one of the most complex. The PLSS provides the life support needed by the astronaut and consists of the oxygen (O2) subsystem, ventilation subsystem, and thermal control subsystem. Within each subsystem, there are many different components, a few of which are explained as follows. The oxygen tanks hold the oxygen that the crewmember uses to breath and pressurizes the suit. The primary oxygen tank is responsible during normal operations and the secondary oxygen tank kicks on in the case of an emergency. The Rapid Cycle Amine (RCA) canister is used to remove the carbon dioxide (CO2) and extra humidity in the crewmember's ventilation/breathing gas. The fan moves the oxygen around the suit. Suit Water Membrane Evaporator (SWME) is used within the thermal control loop to cool the water that is used to maintain a comfortable temperature for both the crew member and the other equipment inside the suit. Another component is the battery, which supplies the power needed to operate all these and the many other pieces. The battery is one of the biggest and heavies components within the PLSS. These are just a few of the components that encompass the PLSS. Each component has a weight and a certain volume that the NASA Engineers must take into account when building the PLSS, because the weight and volumes affect the crewmembers center of gravity (CG). [See the Notes Section for the link to an Apollo video that demonstrates the issues some of the crewmembers had picking up tools and dealing with center of gravity/tools on the surface of the Moon.] In this activity, students will simulate engineering design techniques that NASA Engineers and Designers are currently implementing to configuring the components within the PLSS. Through testing, students will consider the comfort, mobility, and center of gravity for their test subjects and how that changes after adjusting the placement of their simulated PLSS components.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-29489 , JSC Engineering Academy; Oct 20, 2011; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: Simulations of climate over the Last Millennium (850-1850 CE) have been incorporated into the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). The drivers of climate over this period are chiefly orbital, solar, volcanic, changes in land use/land cover and some variation in greenhouse gas levels. While some of these effects can be easily defined, the reconstructions of solar, volcanic and land use-related forcing are more uncertain. We describe here the approach taken in defining the scenarios used in PMIP3, document the forcing reconstructions and discuss likely implications.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9182 , Geoscientific Model Development; 4; 1; 33-45
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-29672 , JSC Engineering Academy; Jan 25, 2011; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: A comprehensive raindrop collision outcome regime diagram that delineates the physical conditions associated with the outcome regimes (i.e., bounce, coalescence, and different breakup types) of binary raindrop collisions is proposed. The proposed diagram builds on a theoretical regime diagram defined in the phase space of collision Weber numbers We and the drop diameter ratio p by including critical angle of impact considerations. In this study, the theoretical regime diagram is first evaluated against a comprehensive dataset for drop collision experiments representative of raindrop collisions in nature. Subsequently, the theoretical regime diagram is modified to explicitly describe the dominant regimes of raindrop interactions in (We, p) by delineating the physical conditions necessary for the occurrence of distinct types of collision-induced breakup (neck/filament, sheet, disk, and crown breakups) based on critical angle of impact consideration. Crown breakup is a subtype of disk breakup for lower collision kinetic energy that presents distinctive morphology. Finally, the experimental results are analyzed in the context of the comprehensive collision regime diagram, and conditional probabilities that can be used in the parameterization of breakup kernels in stochastic models of raindrop dynamics are provided.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN6426 , Journal of the Atmospheric Sciences; 68; 1097-1113
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Low ice crystal concentration and sustained in-cloud supersaturation, commonly found in cloud observations at low temperature, challenge our understanding of cirrus formation. Heterogeneous freezing from effloresced ammonium sulfate, glassy aerosol, dust and black carbon are proposed to cause these phenomena; this requires low updrafts for cirrus characteristics to agree with observations and is at odds with the gravity wave spectrum in the upper troposphere. Background temperature fluctuations however can establish a dynamical equilibrium between ice production and sedimentation loss (as opposed to ice crystal formation during the first stages of cloud evolution and subsequent slow cloud decay) that explains low temperature cirrus properties. This newly-discovered state is favored at low temperatures and does not require heterogeneous nucleation to occur (the presence of ice nuclei can however facilitate its onset). Our understanding of cirrus clouds and their role in anthropogenic climate change is reshaped, as the type of dynamical forcing will set these clouds in one of two preferred microphysical regimes with very different susceptibility to aerosol.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN8090 , Atmospheric Chemistry and Physics; 11; 8; 3757-3771
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: The ability to characterize the global cloud cover from space has been greatly enhanced by the availability of MODIS, CloudSat, and CALIOP data. The three sensors provide good complementary information about clouds. In this study, we investigated unexpected observations of certain types of clouds apparent in the MODIS data but not detected by CloudSat and CALIOP. Several examples are presented and generally these undetected clouds are geometrically thin, low-level clouds. In particular, they are located in the Arctic region and have optical thicknesses of less than 14, top height altitudes of below 2.5 km, and layer thickness of less than 1 km. CloudSat may miss such low-level clouds because of its coarse vertical resolution of about 500 m and it has limited sensitivity near the surface. Unexpectedly, CALIOP with a much higher vertical resolution of 30 m also misses these clouds and this is due to the cloud s geometrically thin nature and surface proximity.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.7204.2012 , Geophysical Research Letters; 38; L24813
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC.CPR.7044.2012 , ASTMH 60th Annual Meetjni; Dec 04, 2011 - Dec 08, 2011; Philadelphia, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: The multi ]stage eruption of the Icelandic volcano Laki beginning in June, 1783 is speculated to have caused unusual dry fog and heat in western Europe and cold in North America during the 1783 summer, and record cold and snow the subsequent winter across the circum-North Atlantic. Despite the many indisputable impacts of the Laki eruption, however, its effect on climate, particularly during the 1783.1784 winter, may be the most poorly constrained. Here we test an alternative explanation for the unusual conditions during this time: that they were caused primarily by a combined negative phase of the North Atlantic Oscillation (NAO) and an El Nino ]Southern Oscillation (ENSO) warm event. A similar combination of NAO ]ENSO phases was identified as the cause of record cold and snowy conditions during the 2009.2010 winter in Europe and eastern North America. 600-year tree-ring reconstructions of NAO and ENSO indices reveal values in the 1783.1784 winter second only to their combined severity in 2009.2010. Data sources and model simulations support our hypothesis that a combined, negative NAO ]ENSO warm phase was the dominant cause of the anomalous winter of 1783.1784, and that these events likely resulted from natural variability unconnected to Laki.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.00420.2012 , Geophysical Research Letters; 38
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: Clouds over the Southern Ocean are often poorly represented by climate models, but they make a significant contribution to the top-of-atmosphere (TOA) radiation balance, particularly in the shortwave portion of the energy spectrum. This study seeks to better quantify the organization and structure of Southern Hemisphere midlatitude clouds by combining measurements from active and passive satellite-based datasets. Geostationary and polar-orbiter satellite data from the International Satellite Cloud Climatology Project (ISCCP) are used to quantify large-scale, recurring modes of cloudiness, and active observations from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) are used to examine vertical structure, radiative heating rates, and precipitation associated with these clouds. It is found that cloud systems are organized into eight distinct regimes and that ISCCP overestimates the midlevel cloudiness of these regimes. All regimes contain a relatively high occurrence of low cloud, with 79%of all cloud layers observed having tops below 3 km, but multiple-layered clouds systems are present in approximately 34% of observed cloud profiles. The spatial distribution of regimes varies according to season, with cloud systems being geometrically thicker, on average, during the austral winter. Those regimes found to be most closely associated with midlatitude cyclones produce precipitation the most frequently, although drizzle is extremely common in low-cloud regimes. The regimes associated with cyclones have the highest in-regime shortwave cloud radiative effect at the TOA, but the low-cloud regimes, by virtue of their high frequency of occurrence over the oceans, dominate both TOA and surface shortwave effects in this region as a whole.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.00355.2012 , Journal of Climate; 24; 19; 5061-5080
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: The tropical Atlantic interhemispheric gradient in sea surface temperature significantly influences the rainfall climate of the tropical Atlantic sector, including droughts over West Africa and Northeast Brazil. This gradient exhibits a secular trend from the beginning of the twentieth century until the 1980s, with stronger warming in the south relative to the north. This trend behavior is on top of a multi-decadal variation associated with the Atlantic multi-decadal oscillation. A similar long-term forced trend is found in a multimodel ensemble of forced twentieth-century climate simulations. Through examining the distribution of the trend slopes in the multimodel twentieth-century and preindustrial models, the authors conclude that the observed trend in the gradient is unlikely to arise purely from natural variations; this study suggests that at least half the observed trend is a forced response to twentieth-century climate forcings. Further analysis using twentieth-century single-forcing runs indicates that sulfate aerosol forcing is the predominant cause of the multimodel trend. The authors conclude that anthropogenic sulfate aerosol emissions, originating predominantly from the Northern Hemisphere, may have significantly altered the tropical Atlantic rainfall climate over the twentieth century
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.00186.2012 , Journal of Climate; 24; 10; 2540-2555
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: We have presented methods to rapidly produce visualization and outreach products from CloudSat data for science and the media These methods combine data from several sources in the product generation process In general, the process can be completely automatic, producing products and notifying potential users
    Keywords: Meteorology and Climatology
    Type: International Center for Remote Sensing of Environment (ICRSE); Apr 14, 2011; Sydney; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: YOTC International Science Symposium; May 16, 2011 - May 19, 2011; Beijing; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: interannual variability in modeled (CASA) C flux is in part caused by interannual variability in Normalized Difference Vegetation Index (NDVI) Fraction of Photosynthetically Active Radiation (FPAR). This study confirms a mechanism producing variability in modeled NPP: -- NDVI (FPAR) interannual variability is strongly driven by climate; -- The climate driven variability in NDVI (FPAR) can lead to much larger fluctuation in NPP vs. the NPP computed from FPAR climatology
    Keywords: Meteorology and Climatology
    Type: GSFC.CPR.6109.2012 , Carbon Cycle and Ecosystem Joint Science Workshop; Oct 02, 2011 - Oct 05, 2011; Alexandria, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC.OVPR.5852.2012 , American Geophysical Union; Nov 05, 2011 - Nov 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: HEND Workshop; Apr 14, 2011; Moscow; Russia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: POLRES Workshop; Feb 21, 2011; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: Developing technologies that would enable NASA to sample rock, soil, and ice by coring, drilling or abrading at a significant depth is of great importance for a large number of in-situ exploration missions as well as for earth applications. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for records of past and present life on the planet, as well as, the search for water and other resources. A deep corer, called Auto-Gopher, is currently being developed as a joint effort of the JPL's NDEAA laboratory and Honeybee Robotics Corp. The Auto-Gopher is a wire-line rotary-hammer drill that combines rock breaking by hammering using an ultrasonic actuator and cuttings removal by rotating a fluted bit. The hammering mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) that has been developed as an adaptable tool for many of drilling and coring applications. The USDC uses an intermediate free-flying mass to transform the high frequency vibrations of the horn tip into a sonic hammering of a drill bit. The USDC concept was used in a previous task to develop an Ultrasonic/Sonic Ice Gopher. The lessons learned from testing the ice gopher were implemented into the design of the Auto-Gopher by inducing a rotary motion onto the fluted coring bit. A wire-line version of such a system would allow penetration of significant depth without a large increase in mass. A laboratory version of the corer was developed in the NDEAA lab to determine the design and drive parameters of the integrated system. The design configuration lab version of the design and fabrication and preliminary testing results are presented in this paper
    Keywords: Man/System Technology and Life Support
    Type: ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; May 07, 2011 - May 11, 2011; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: Satellite lightning imagers such as the NASA Tropical Rainfall Measuring Mission Lightning Imaging Sensor (TRMM/LIS) and the future GOES-R Geostationary Lightning Mapper (GLM) are designed to detect total lightning (ground flashes + cloud flashes). However, there is a desire to discriminate ground flashes from cloud flashes from the vantage point of space since this would enhance the overall information content of the satellite lightning data and likely improve its operational and scientific applications (e.g., in severe weather warning, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters (one of which is the ground flash fraction), a scalar function was minimized by a numerical method. In order to improve this optimization, a Grobner basis solution was introduced to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. In this study, we test the efficacy of the Grobner basis initialization using actual lightning imager measurements and ground flash truth derived from the national lightning network.
    Keywords: Meteorology and Climatology
    Type: M11-0913 , M11-1366 , 2011 American Geophysical Union Fall Meeting; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: Spatial correlations of two of the main rain drop-size distribution (DSD) parameters - namely the median-volume diameter (Do) and the normalized intercept parameter (Nw) - as well as rainfall rate (R) are determined from polarimetric radar measurements, with added information from 2D video disdrometer (2DVD) data. Two cases have been considered, (i) a widespread, long-duration rain event in Huntsville, Alabama, and (ii) an event with localized intense rain-cells within a convection line which occurred during the MC3E campaign. For the first case, data from a C-band polarimetric radar (ARMOR) were utilized, with two 2DVDs acting as ground-truth , both being located at the same site 15 km from the radar. The radar was operated in a special near-dwelling mode over the 2DVDs. In the second case, data from an S-band polarimetric radar (NPOL) data were utilized, with at least five 2DVDs located between 20 and 30 km from the radar. In both rain event cases, comparisons of Do, log10(Nw) and R were made between radar derived estimates and 2DVD-based measurements, and were found to be in good agreement, and in both cases, the radar data were subsequently used to determine the spatial correlations For the first case, the spatial decorrelation distance was found to be smallest for R (4.5 km), and largest fo Do (8.2 km). For log10(Nw) it was 7.2 km (Fig. 1). For the second case, the corresponding decorrelation distances were somewhat smaller but had a directional dependence. In Fig. 2, we show an example of Do comparisons between NPOL based estimates and 1-minute DSD based estimates from one of the five 2DVDs.
    Keywords: Meteorology and Climatology
    Type: M11-0890 , American Geophysical Union Fall Meeting 2011; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: At optical wavelengths and from the vantage point of space, the multiple scattering cloud medium obscures one's view and prevents one from easily determining what flashes strike the ground. However, recent investigations have made some progress examining the (easier, but still difficult) problem of estimating the ground flash fraction in a set of N flashes observed from space In the study by Koshak, a Bayesian inversion method was introduced for retrieving the fraction of ground flashes in a set of flashes observed from a (low earth orbiting or geostationary) satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters, a scalar function of three variables (one of which is the ground flash fraction) was minimized by a numerical method. This method has formed the basis of a Ground Flash Fraction Retrieval Algorithm (GoFFRA) that is being tested as part of GOES-R GLM risk reduction.
    Keywords: Meteorology and Climatology
    Type: M11-1069 , GOES-R Risk Reduction Annual Review; Sep 21, 2011 - Sep 23, 2011; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M11-0937 , American Institute of Chemical Engineers (AICHE) Annual Meeting; Oct 14, 2011 - Oct 17, 2011; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: We have developed a dry-electrode harness that permits easy, rapid, and unsupervised self-acquisition of resting 12-lead ECGs without the use of any disposables. Various other advantageous features of the harness include: 1) padded or inflatable cushions at the lateral sides of the torso that function to press the left arm (LA) and right arm (RA) dry electrodes mounted on cushions against sideward (as shown in the Figure below) or downward-rested arms of the subject; 2) sufficient distal placement of the arm electrodes with good abutment and without the need for adhesives, straps, bands, bracelets, or gloves on the arms; 3) padding over the sternum to avoid "tenting" in the V1 through V3 (and V3R, when present) electrode positions; 4) easy-to-don, one-piece design with an adjustable single point of connection and an adjustable shoulder strap; and 5) Lund or "modified Lund" placement of the dry electrodes, the results of which more effectively reproduce results from "standard" 12-lead ECG placements than do results from Mason-Likar lead placements.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25230 , 2012 NASA Human Research Program Investigators'' Workshop; Feb 14, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: Non-CO2 air pollutants from motor vehicles have traditionally been controlled to protect air quality and health, but also affect climate. We use global composition climate modelling to examine the integrated impacts of adopting stringent European on-road vehicle-emission standards for these pollutants in 2015 in many developing countries. Relative to no extra controls, the tight standards lead to annual benefits in 2030 and beyond of 120,000-280,000 avoided premature air pollution-related deaths, 6.1-19.7 million metric tons of avoided ozone-related yield losses of major food crops, $US0.6-2.4 trillion avoided health damage and $US1.1-4.3 billion avoided agricultural damage, and mitigation of 0.20 (+0.14/-0.17) C of Northern Hemisphere extratropical warming during 2040-2070. Tighter vehicle-emission standards are thus extremely likely to mitigate short-term climate change in most cases, in addition to providing large improvements in human health and food security. These standards will not reduce CO2 emissions, however, which is required to mitigate long-term climate change.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.5240.2011 , Nature Climate Change; 1; 59-66
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: Our goal is to develop a unique, miniaturized, solute analyzer based on microfluidics technology. The analyzer consists of an integrated microfluidics High Performance Liquid Chromatographic chip / Differential Mobility Spectrometer (?HPLCchip/ DMS) detection system
    Keywords: Man/System Technology and Life Support
    Type: 42nd Lunar and Planetary Science Conference; Mar 07, 2011 - Mar 11, 2011; The Woodlands, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: In-Situ Resource Utilization (ISRU) and lunar science share similar objectives with respect to analyzing and characterizing the physical, mineral, and volatile materials and resources at sites of robotic and human exploration. To help mature and stress instruments, technologies, and hardware and to evaluate operations and procedures, space agencies have utilized demonstrations at analog sites on Earth before use in future missions. The US National Aeronautics and Space Administration (NASA), the Canadian Space Agency (CSA), and the German Space Agency (DLR) have utilized an analog site on the slope of Mauna Kea on the Big Island of Hawaii to test ISRU and lunar science hardware and operations in two previously held analog field tests. NASA and CSA are currently planning on a 3rd analog field test to be held in June, 2012 in Hawaii that will expand upon the successes from the previous two field tests.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-24415 , 2011 European Planetary Science Congress (EPSC) and the American Astronomical Society''s Division of Planetary Sciences (DPS)(EPSC-DPS 2011); Oct 03, 2011 - Oct 07, 2011; Nantes; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.5038.2011 , ICAP Workshop on Aerosol Forecast Verification; Sep 30, 2010 - Oct 01, 2010; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.
    Keywords: Meteorology and Climatology
    Type: NF1676L-13090 , 2011 ICOLSE - International Conference on Lightning and Static Electricity; Sep 06, 2011 - Sep 08, 2011; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: An analog mission is an activity that maps multiple features of the target mission in an integrated fashion to gain an understanding of system-level interactions and integrated operations.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-24658 , First Community Workshop: Capabilities for Human Habitation and Operations in CIS-Lunar Space: What''s Necessary Now?; Sep 21, 2011 - Sep 22, 2011; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: An automated contrail detection algorithm (CDA) is developed to exploit six of the infrared channels on the 1-km MODerate-resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites. The CDA is refined and balanced using visual error analysis. It is applied to MODIS data taken by Terra and Aqua over the United States during 2006 and 2008. The results are consistent with flight track data, but differ markedly from earlier analyses. Contrail coverage is a factor of 4 less than other retrievals and the retrieved contrail optical depths and radiative forcing are smaller by approx.30%. The discrepancies appear to be due to the inability to detect wider, older contrails that comprise a significant amount of the contrail coverage. An example of applying the algorithm to MODIS data over the entire Northern Hemisphere is also presented. Overestimates of contrail coverage are apparent in some tropical regions. Methods for improving the algorithm are discussed and are to be implemented before analyzing large amounts of Northern Hemisphere data. The results should be valuable for guiding and validating climate models seeking to account for aviation effects on climate.
    Keywords: Meteorology and Climatology
    Type: AIAA Paper 2011-3375 , NF1676L-12719 , 3rd AIAA Atmospheric Space Environments Conference; Jun 27, 2011 - Jun 30, 2011; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC.CPR.4949.2011 , 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2011); Jul 24, 2011 - Jul 29, 2011; Vancouver; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: This paper compares recent spatial anomaly time series of OLR (Outgoing Longwave Radiation) and OLRCLR (Clear Sky OLR) as determined using CERES and AIRS observations over the time period September 2002 through June 2010. We find excellent agreement in OLR anomaly time series of both data sets in almost every detail, down to the 1 x 1 spatial grid point level. This extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies that both sets of results must be highly stable. This agreement also validates to some extent the anomaly time series of the AIRS derived products used in the computation of the AIRS OLR product. The paper then examines anomaly time series of AIRS derived products over the extended time period September 2002 through April 2011. We show that OLR anomalies during this period are closely in phase with those of an El Nino index, and that recent global and tropical mean decreases in OLR and OLR(sub CLR) are a result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. This relationship can be explained by temporal changes of the distribution of mid-tropospheric water vapor and cloud cover in two spatial regions that are in direct response to El Nino/La Nina activity which occurs outside these spatial regions
    Keywords: Meteorology and Climatology
    Type: GSFC.CP.5036.2011 , SPIE Optics and Photonics 2011; Aug 21, 2011 - Aug 25, 2011; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: Beginning in June of 2010 an environmental mystery was unfolding on the International Space Station (ISS). The U.S. Water Processor Assembly (WPA) began to produce water with increasing levels of total organic carbon (TOC). A surprisingly consistent upward TOC trend was observed through weekly in-flight total organic carbon analyzer (TOCA) monitoring. As TOC is a general organics indicator, return of water archive samples was needed to make better-informed crew health decisions and to aid in WPA troubleshooting. TOCA-measured TOC was more than halfway to its health-based screening limit before archive samples could be returned on Soyuz 22 and analyzed. Although TOC was confirmed to be elevated, somewhat surprisingly, none of the typical target compounds were the source. After some solid detective work, it was confirmed that the TOC was associated with a compound known as dimethylsilanediol (DMSD). DMSD is believed to be a breakdown product of silicon-containing compounds present on ISS. A toxicological limit was set for DMSD and a forward plan developed for operations given this new understanding of the source of the TOC. This required extensive coordination with ISS stakeholders and innovative use of available in-flight and archive monitoring resources. Behind the numbers and scientific detail surrounding this anomaly, there exists a compelling story of multi-disciplinary awareness, teamwork, and important environmental lessons learned.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-24010 , 41st International Conference on Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland,OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: NASA's aeronautical research not only encompasses advancing aircraft technology and aviation safety for today and the future, but it also has a branch that deals with Airborne Science. This Airborne Science branch possesses unique airborne flight vehicles (manned and unmanned) whose sole purpose is to take scientists and their experiments anywhere in the world, into nearly any climatic condition, to gather the data they need for their research. This research spans such fields as; global warming, weather analysis, air and water pollution, mineral and archaeology search, earthquake damage and prediction, and yes, hurricanes. The data we obtain will hopefully, one day, allow us to better understand our planet, its natural forces and man's interaction with them.
    Keywords: Meteorology and Climatology
    Type: DFRC-E-DAA-TN3320 , 6th Extreme Weather Congress; Apr 12, 2011 - Apr 15, 2011; Hamburg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-23319 , 41st International Conference on Environmental Systems (ICES); Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...