ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
  • Elsevier  (3)
  • American Chemical Society
  • Periodicals Archive Online (PAO)
  • 2010-2014  (3)
  • 1995-1999
  • 1985-1989
  • 1950-1954
  • 1945-1949
  • 1935-1939
  • 2011  (3)
Collection
Keywords
Years
  • 2010-2014  (3)
  • 1995-1999
  • 1985-1989
  • 1950-1954
  • 1945-1949
  • +
Year
  • 1
    Publication Date: 2020-12-03
    Description: We use Global Positioning System (GPS) velocities and dislocation modeling to investigate the rate and nature of interseismic strain accumulation in the area affected by the 1908 Mw 7.1 Messina earthquake (southern Italy) within the framework of the complex central Mediterranean microplate kinematics. Our data confirm a change in the velocity trends between Sicily and Calabria, moving from NNW-ward to NE- ward with respect to Eurasia, and detail a fan-like pattern across the Messina Straits where maximum extensional strain rates are ~65 nanostrains/yr. Extension normal to the coast of northern Sicily is consistent with the presence of SW–NE trending normal faults. Half-space dislocation models of the GPS velocities are used to infer the slip-rates and geometric fault parameters of the fault zone that ruptured in the Messina − 1.3 earthquake. The inversion, and the bootstrap analysis of model uncertainties, finds optimal values of 3. 5 + 2.0 − 0.2− 0.7 and 1.6 + 0.3 mm/yr for the dip–slip and strike–slip components, respectively, along a 30 + 1.1° SE-ward dipping normal fault, locked above 7.6−2.9 km depth. By developing a regional elastic block model that + 4.6 accounts for both crustal block rotations and strain loading at block-bounding faults, and adopting two different competing models for the Ionian–Calabria convergence rates, we show that the measured velocity gradient across the Messina Straits may be significantly affected by the elastic strain contribution from other nearby faults. In particular, when considering the contribution of the possibly locked Calabrian subduction interface onto the observed velocity gradients in NE-Sicily and western Calabria, we find that this longer wavelength signal can be presently super-imposed on the observed velocity gradients in NE-Sicily and Calabria. The inferred slip-rate on the Messina Fault is significantly impacted by elastic strain from the subduction thrust. By varying the locking of the subduction thrust fault, in fact, the Messina Fault slip-rate varies from 0 to 9 mm/yr.
    Description: Published
    Description: 347-360
    Description: 1.9. Rete GPS nazionale
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Messina Straits ; Global Positioning System ; strain accumulation ; plate kinematics ; dislocation modeling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We used data of local earthquakes collected during two recent passive seismic experiments carried out in southern Italy in order to study the seismotectonic setting of the Lucanian Apennine and the surrounding areas. Based on continuous recordings of the temporary stations we extracted over 15,600 waveforms, which were hand-picked along with those recorded by the permanent stations of the Italian national seismic network obtaining a dense, high-quality dataset of P- and S-arrival times. We examined the seismicity occurring in the period 2001–2008 by relocating 566 out of 1047 recorded events with magnitudes ML ≥1.5 and computing 162 fault-plane solutions. Earthquakes were relocated using a minimum one-dimensional velocity model previously obtained for the region and a Vp/Vs ratio of 1.83. Background seismicity is concentrated within the upper crust (between 5 and 20km of depth) and it is mostly clustered along the Lucanian Apennine chain axis. A significant feature extracted from this study relates to the two E–W trending clusters located in the Potentino and in the Abriola–Pietrapertosa sector (central Lucania region). Hypocentral depths in both clusters are slightly deeper than those observed beneath the Lucanian Apennine. We suggest that these two seismic features are representative of the transition from the inner portion of the chain to the external margin characterized by dextral strike-slip kinematics. In the easternmost part of the study area, below the Bradano foredeep and the Apulia foreland, seismicity is generally deeper and more scattered. The sparse seismicity localized in the Sibari Plain, in the offshore area along the northeastern Calabrian coast and in the Taranto Gulf is also investigated thanks to the new recordings. This seismicity shows hypocenters between 12 and 20km of depth below the Sibari Plain and is deeper (foci between 10 and 35km of depth) in the offshore area of the Taranto Gulf. 102 well-constrained fault-plane solutions, showing predominantly normal and strike-slip character with tensional axes (T-axes) generally NE oriented, were selected for the stress tensor analysis. We investigated stress field orientation inverting focal mechanism belonging to the Lucanian Apennine and the Pollino Range, both areas characterized by a more concentrated background seismicity.
    Description: Published
    Description: 110-124
    Description: 3.2. Tettonica attiva
    Description: 5.7. Consulenze in favore di istituzioni nazionali e attività nell'ambito di trattati internazionali
    Description: JCR Journal
    Description: restricted
    Keywords: Background seismicity ; Passive seismic experiments ; Southern Apennines ; Apulia foreland ; Stress field ; Seismotectonic ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Friction laboratory experiments have been performed at sub-seismic (≈ 0.01 m/s) to seismic slip rates (N1 m/s) on dolomite gouges of the Triassic evaporites, which hosted the five mainshocks (5bMw b6) of the 1997 Colfiorito earthquakes in the Northern Apennines (Italy). Experimental faults are lubricated as marked falls of the steady state sliding friction coefficients, μss≈0.2, are observed at seismic slip rates, as opposed to values of μss≥0.6 attained for sub-seismic slip rates. At seismic slip rates decarbonation reactions, triggered by frictional heating in the experimental slip zone, produced: 1) new fluid (CO2) and mineral phases (e.g. Mg-calcite, periclase/brucite, lime/portlandite); 2) isotopic fractionation between the reaction products and the reactant mineral phases. The variations of total dissolved inorganic carbon (TIDC) in concentration Δ(TDIC) and isotopic composition Δ(δ13CTIDC) in a carbonate aquifer, with geochemical parameters similar to those of an aquifer located in the seismic belt of the Northern Apennines, have been modelled after an input of earthquake-produced CO2. Modelling results show that variation in Δ(δ13CTIDC) can be detected in volumes of groundwater which are about three times larger than those calculated for the variations in Δ(TDIC). For amounts of CO2 produced by coseismic decarbonation of ≤5 wt.% of the slip zone gouge, modelling results show that a detectable geochemical anomaly is obtained if the produced CO2 is dissolved into volumes of water comparable to those of the shallower aquifers feeding the springs in the 1997 Colfiorito earthquakes area. We conclude that the integration of results from laboratory experiments, performed at seismic condition, and geochemical analyses can potentially aid in the calibration of monitoring strategies of geochemical properties of water in seismically active areas and provide insights into seismic fault zone processes (e.g. constraints on the temperature rise during earthquake propagation).
    Description: Published
    Description: 225-232
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: earthquakes ; friction ; isotopes ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...