ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (9,847)
  • American Geophysical Union  (6,035)
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • Institute of Electrical and Electronics Engineers
  • Springer Science + Business Media
  • 2020-2024
  • 2010-2014  (18,901)
  • 1985-1989
  • 1960-1964
  • 2011  (18,901)
Collection
Publisher
Years
  • 2020-2024
  • 2010-2014  (18,901)
  • 1985-1989
  • 1960-1964
Year
  • 1
    Publication Date: 2011-06-07
    Description: Kinematics of a mass movement constrained by sparse and inhomogeneous data Natural Hazards and Earth System Science, 11, 1609-1618, 2011 Author(s): M. Karbon, E. Brückl, E. Hegedüs, and A. Preh On 12 February 2008, a landslide occurred along a 50 m high bank of the Danube river near Dunaszekcsö, Hungary. The initial state is only incompletely documented and the geodetic data acquired after the mass movement are sparse. A generalized 3-D topographic model of the landslide and its surrounding area was assembled and a representative longitudinal profile extracted. The reconstruction of the original surface is based on an orthophoto as well as on morphological considerations. Recorded observations include the locations of the outcrops of basal sliding surfaces, displacements at the main scarp and in the lower part of the slide, and a value to describe the total mass transport. Such sparse and inhomogeneous data were insufficient to derive a comprehensive documentation of the landslide or obtain adequate constraints for an accurate numerical analysis. Therefore, slider block models were fitted to the field data, which have only a small number of free parameters. A general view on the morphology of the mass movement justifies its classification as a rotational slide. A double slider block model fits all observational parameters within their error margin and supplies valuable information on the geometry of the slide. Estimates of the residual friction angles were derived and the question of reactivation was addressed. Finite Difference (FD) modelling and the application of conventional stability analysis support the geometry of the slider blocks and the computed average residual friction angles. Generally, the results are assumed to represent preliminary information, which could only be attained by the combination of the thinly distributed geodetic data with qualitative morphological observations and the implementation of a model. This type of information can be gained quickly and may be valuable for preliminary hazard mitigation measures or the planning of a comprehensive exploration and monitoring program.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-07
    Description: North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation Ocean Science, 7, 389-404, 2011 Author(s): I. Medhaug and T. Furevik Output from a total of 24 state-of-the-art Atmosphere-Ocean General Circulation Models is analyzed. The models were integrated with observed forcing for the period 1850–2000 as part of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. All models show enhanced variability at multi-decadal time scales in the North Atlantic sector similar to the observations, but with a large intermodel spread in amplitudes and frequencies for both the Atlantic Multidecadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC). The models, in general, are able to reproduce the observed geographical patterns of warm and cold episodes, but not the phasing such as the early warming (1930s–1950s) and the following colder period (1960s–1980s). This indicates that the observed 20th century extreme in temperatures are due to primarily a fortuitous phasing of intrinsic climate variability and not dominated by external forcing. Most models show a realistic structure in the overturning circulation, where more than half of the available models have a mean overturning transport within the observed estimated range of 13–24 Sverdrup. Associated with a stronger than normal AMOC, the surface temperature is increased and the sea ice extent slightly reduced in the North Atlantic. Individual models show potential for decadal prediction based on the relationship between the AMO and AMOC, but the models strongly disagree both in phasing and strength of the covariability. This makes it difficult to identify common mechanisms and to assess the applicability for predictions.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-06-07
    Description: Sensitivity analysis of an ocean carbon cycle model in the North Atlantic: an investigation of parameters affecting the air-sea CO 2 flux, primary production and export of detritus Ocean Science, 7, 405-419, 2011 Author(s): V. Scott, H. Kettle, and C. J. Merchant The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO 2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO 2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO 2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-10
    Description: Theoretical basis for convective invigoration due to increased aerosol concentration Atmospheric Chemistry and Physics, 11, 5407-5429, 2011 Author(s): Z. J. Lebo and J. H. Seinfeld The potential effects of increased aerosol loading on the development of deep convective clouds and resulting precipitation amounts are studied by employing the Weather Research and Forecasting (WRF) model as a detailed high-resolution cloud resolving model (CRM) with both detailed bulk and bin microphysics schemes. Both models include a physically-based activation scheme that incorporates a size-resolved aerosol population. We demonstrate that the aerosol-induced effect is controlled by the balance between latent heating and the increase in condensed water aloft, each having opposing effects on buoyancy. It is also shown that under polluted conditions, increases in the CCN number concentration reduce the cumulative precipitation due to the competition between the sedimentation and evaporation/sublimation timescales. The effect of an increase in the IN number concentration on the dynamics of deep convective clouds is small and the resulting decrease in domain-averaged cumulative precipitation is shown not to be statistically significant, but may act to suppress precipitation. It is also shown that even in the presence of a decrease in the domain-averaged cumulative precipitation, an increase in the precipitation variance, or in other words, andincrease in rainfall intensity, may be expected in more polluted environments, especially in moist environments. A significant difference exists between the predictions based on the bin and bulk microphysics schemes of precipitation and the influence of aerosol perturbations on updraft velocity within the convective core. The bulk microphysics scheme shows little change in the latent heating rates due to an increase in the CCN number concentration, while the bin microphysics scheme demonstrates significant increases in the latent heating aloft with increasing CCN number concentration. This suggests that even a detailed two-bulk microphysics scheme, coupled to a detailed activation scheme, may not be sufficient to predict small changes that result from perturbations in aerosol loading.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-06-10
    Description: Analysis of HCl and ClO time series in the upper stratosphere using satellite data sets Atmospheric Chemistry and Physics, 11, 5321-5333, 2011 Author(s): A. Jones, J. Urban, D. P. Murtagh, C. Sanchez, K. A. Walker, N. J. Livesey, L. Froidevaux, and M. L. Santee Previous analyses of satellite and ground-based measurements of hydrogen chloride (HCl) and chlorine monoxide (ClO) have suggested that total inorganic chlorine in the upper stratosphere is on the decline. We create HCl and ClO time series using satellite data sets extended to November 2008, so that an update can be made on the long term evolution of these two species. We use the HALogen Occultation Experiment (HALOE) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) data for the HCl analysis, and the Odin Sub-Millimetre Radiometer (SMR) and the Aura Microwave Limb Sounder (Aura-MLS) measurements for the study of ClO. Altitudes between 35 and 45 km and two mid-latitude bands: 30° S–50° S and 30° N–50° N, for HCl, and 20° S–20° N for ClO and HCl are studied. ACE-FTS and HALOE HCl anomaly time series (with QBO and seasonal contributions removed) are combined to produce all instrument average time series, which show HCl to be reducing from peak 1997 values at a linear estimated rate of −5.1 % decade −1 in the Northern Hemisphere and −5.2 % decade −1 in the Southern Hemisphere, while the tropics show a linear trend of −5.8 % per decade (although we do not remove the QBO contribution there due to sparse data). Trend values are significantly different from a zero trend at the 2 sigma level. ClO is decreasing in the tropics by −7.1 % ± 7.8 % decade −1 based on measurements made from December 2001 to November 2008. The statistically significant downward trend found in HCl after 1997 and the apparent downward ClO trend since 2001 (although not statistically significant) confirm how effective the 1987 Montreal protocol objectives and its amendments have been in reducing the total amount of inorganic chlorine.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-06-10
    Description: Bayesian statistical modeling of spatially correlated error structure in atmospheric tracer inverse analysis Atmospheric Chemistry and Physics, 11, 5365-5382, 2011 Author(s): C. Mukherjee, P. S. Kasibhatla, and M. West We present and discuss the use of Bayesian modeling and computational methods for atmospheric chemistry inverse analyses that incorporate evaluation of spatial structure in model-data residuals. Motivated by problems of refining bottom-up estimates of source/sink fluxes of trace gas and aerosols based on satellite retrievals of atmospheric chemical concentrations, we address the need for formal modeling of spatial residual error structure in global scale inversion models. We do this using analytically and computationally tractable conditional autoregressive (CAR) spatial models as components of a global inversion framework. We develop Markov chain Monte Carlo methods to explore and fit these spatial structures in an overall statistical framework that simultaneously estimates source fluxes. Additional aspects of the study extend the statistical framework to utilize priors on source fluxes in a physically realistic manner, and to formally address and deal with missing data in satellite retrievals. We demonstrate the analysis in the context of inferring carbon monoxide (CO) sources constrained by satellite retrievals of column CO from the Measurement of Pollution in the Troposphere (MOPITT) instrument on the TERRA satellite, paying special attention to evaluating performance of the inverse approach using various statistical diagnostic metrics. This is developed using synthetic data generated to resemble MOPITT data to define a proof-of-concept and model assessment, and then in analysis of real MOPITT data. These studies demonstrate the ability of these simple spatial models to substantially improve over standard non-spatial models in terms of statistical fit, ability to recover sources in synthetic examples, and predictive match with real data.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-06-10
    Description: Understanding evolution of product composition and volatility distribution through in-situ GC × GC analysis: a case study of longifolene ozonolysis Atmospheric Chemistry and Physics, 11, 5335-5346, 2011 Author(s): G. Isaacman, D. R. Worton, N. M. Kreisberg, C. J. Hennigan, A. P. Teng, S. V. Hering, A. L. Robinson, N. M. Donahue, and A. H. Goldstein A method for predicting volatility and polarity based on chromatographic information was developed and applied to the smog chamber ozonolysis of the sesquiterpene longifolene. The products were collected and analyzed using a GC × GC Thermal Desorption Aerosol Gas Chromatograph/Mass Spectrometer (2D-TAG) and a quadrupole Aerodyne Aerosol Mass Spectrometer (AMS). All the secondary organic aerosol (SOA) was produced within the first half hour of the experiment. However, the oxidation level of the organic aerosol, as inferred from the fraction of ion m/z 44, suggested continued evolution of the SOA over the subsequent hours. Measurements of speciated organic compounds using 2D-TAG confirm that the composition of the particles changed over the course of the experiment. Nearly 200 oxidation products (thought to be mostly ketones and acids) were observed with 2D-TAG, but most could not be identified definitively due to a lack of standards and the absence of likely sesquiterpene oxidation products in available mass spectral databases. To categorize the observed products, the vapor pressure and oxygen-to-carbon ratio (O/C) of observed compounds were estimated based on their two-dimensional chromatographic retention times relative to those of known standards, establishing a retention time correlation (RTC) method for using 2D-TAG to better constrain important modelling parameters. The product distribution continuously evolved in volatility and oxygenation during 5 h of oxidation. Using peak area as the best available proxy for mass, we conclude that the product mixture includes many non-negligible products; the most abundant 3 compounds accounted for only half of the total observed peak area and 80 % of peak area was spread across 15 compounds. The data provide evidence for three conclusions: (1) 2D-TAG provides valuable volatility and oxygenation information even in the absence of definitive species identification, (2) complex particle-phase chemistry causes continued evolution of particle composition after new particles formation, and (3) minor products contribute significantly to SOA from the ozonolysis of longifolene.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-06-10
    Description: The Level 2 research product algorithms for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) Atmospheric Measurement Techniques Discussions, 4, 3593-3645, 2011 Author(s): P. Baron, J. Urban, H. Sagawa, J. Möller, D. P. Murtagh, J. Mendrok, E. Dupuy, T. O. Sato, S. Ochiai, K. Suzuki, T. Manabe, T. Nishibori, K. Kikuchi, R. Sato, M. Takayanagi, Y. Murayama, M. Shiotani, and Y. Kasai This paper describes the algorithms of the level-2 research (L2r) processing chain developed for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES). The chain has been developed in parallel to the operational chain for conducting researches on calibration and retrieval algorithms. L2r chain products are available to the scientific community. The objective of version 2 is the retrieval of the vertical distribution of trace gases in the altitude range of 18–90 km. An theoretical error analysis is conducted to estimate the retrieval feasibility of key parameters of the processing: line-of-sight elevation tangent altitudes (or angles), temperature and O 3 profiles. The line-of-sight tangent altitudes are retrieved between 20 and 50 km from the strong ozone (O 3 ) line at 625.371 GHz, with low correlation with the O 3 volume-mixing ratio and temperature retrieved profiles. Neglecting the non-linearity of the radiometric gain in the calibration procedure is the main systematic error. It is large for the retrieved temperature (between 5–10 K). Therefore, atmospheric pressure can not be derived from the retrieved temperature, and, then, in the altitude range where the line-of-sight tangent altitudes are retrieved, the retrieved trace gases profiles are found to be better represented on pressure levels than on altitude levels. The error analysis for the retrieved HOCl profile demonstrates that best results for inverting weak lines can be obtained by using narrow spectral windows. Future versions of the L2r algorithms will improve the temperature/pressure retrievals and also provide information in the upper tropospheric/lower stratospheric region (e.g., water vapor, ice content, O 3 ) and on stratospheric and mesospheric line-of-sight winds.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-06-10
    Description: Deciphering the spatio-temporal complexity of climate change of the last deglaciation: a model analysis Climate of the Past, 7, 591-602, 2011 Author(s): D. M. Roche, H. Renssen, D. Paillard, and G. Levavasseur Understanding the sequence of events occuring during the last major glacial to interglacial transition (21 ka BP to 9 ka BP) is a challenging task that has the potential to unveil the mechanisms behind large scale climate changes. Though many studies have focused on the understanding of the complex sequence of rapid climatic change that accompanied or interrupted the deglaciation, few have analysed it in a more theoretical framework with simple forcings. In the following, we address when and where the first significant temperature anomalies appeared when using slow varying forcing of the last deglaciation. We used here coupled transient simulations of the last deglaciation, including ocean, atmosphere and vegetation components to analyse the spatial timing of the deglaciation. To keep the analysis in a simple framework, we did not include freshwater forcings that potentially cause rapid climate shifts during that time period. We aimed to disentangle the direct and subsequent response of the climate system to slow forcing and moreover, the location where those changes are more clearly expressed. In a data – modelling comparison perspective, this could help understand the physically plausible phasing between known forcings and recorded climatic changes. Our analysis of climate variability could also help to distinguish deglacial warming signals from internal climate variability. We thus are able to better pinpoint the onset of local deglaciation, as defined by the first significant local warming and further show that there is a large regional variability associated with it, even with the set of slow forcings used here. In our model, the first significant hemispheric warming occurred simultaneously in the North and in the South and is a direct response to the obliquity forcing.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-06-10
    Description: Impact of changes in grain size and pore space on the hydraulic conductivity and spectral induced polarization response of sand Hydrology and Earth System Sciences, 15, 1785-1794, 2011 Author(s): K. Koch, A. Kemna, J. Irving, and K. Holliger Understanding the influence of pore space characteristics on the hydraulic conductivity and spectral induced polarization (SIP) response is critical for establishing relationships between the electrical and hydrological properties of surficial unconsolidated sedimentary deposits, which host the bulk of the world's readily accessible groundwater resources. Here, we present the results of laboratory SIP measurements on industrial-grade, saturated quartz samples with granulometric characteristics ranging from fine sand to fine gravel. We altered the pore space characteristics by changing (i) the grain size spectra, (ii) the degree of compaction, and (iii) the level of sorting. We then examined how these changes affect the SIP response, the hydraulic conductivity, and the specific surface area of the considered samples. In general, the results indicate a clear connection between the SIP response and the granulometric as well as pore space characteristics. In particular, we observe a systematic correlation between the hydraulic conductivity and the relaxation time of the Cole-Cole model describing the observed SIP effect for the entire range of considered grain sizes. The results do, however, also indicate that the detailed nature of these relations depends strongly on variations in the pore space characteristics, such as, for example, the degree of compaction. This underlines the complexity of the origin of the SIP signal as well as the difficulty to relate it to a single structural factor of a studied sample, and hence raises some fundamental questions with regard to the practical use of SIP measurements as site- and/or sample-independent predictors of the hydraulic conductivity.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...