ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.01. Computational geophysics::05.01.03. Inverse methods  (3)
  • American Geophysical Union  (3)
  • American Institute of Physics (AIP)
  • International Union of Crystallography
  • 2020-2024
  • 2010-2014  (3)
  • 2005-2009
  • 2011  (3)
  • 1
    Publication Date: 2020-12-03
    Description: A model is presented of the growth rate of turbulently generated irregularities in the electron concentration of northern polar cap plasma patches. The turbulence is generated by the short‐term fluctuations in the electric field imposed on the polar cap ionosphere by electric field mapping from the magnetosphere. The model uses an ionospheric imaging algorithm to specify the state of the ionosphere throughout. The growth rates are used to estimate mean amplitudes for the irregularities, and these mean amplitudes are compared with observations of the scintillation indices S4 and s by calculating the linear correlation coefficients between them. The scintillation data are recorded by GPS L1 band receivers stationed at high northern latitudes. A total of 13 days are analyzed, covering four separate magnetic storm periods. These results are compared with those from a similar model of the gradient drift instability (GDI) growth rate. Overall, the results show better correlation between the GDI process and the scintillation indices than for the turbulence process and the scintillation indices. Two storms, however, show approximately equally good correlations for both processes, indicating that there might be times when the turbulence process of irregularity formation on plasma patches may be the controlling one.
    Description: Published
    Description: A04310
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: restricted
    Keywords: ionospheric irregularities ; scintillations ; Gradient Drift Instability ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: High-rate sampling data of GNSS (Global Navigation Satellite Systems) ionospheric scintillation acquired by a network of GISTM (GPS Ionospheric Scintillation and TEC Monitor) receivers located in the Svalbard Islands, in Norway and in Antarctica have been analyzed. The aim is to describe the “scintillation climatology” of the high latitude ionosphere over both the poles under quiet conditions of the near-Earth environment. For climatology we mean to assess the general recurrent features of the ionospheric irregularities dynamics and temporal evolution on long data series, trying to catch eventual correspondences with scintillation occurrence. In spite of the fact that the sites are not geomagnetically conjugate, long series of data recorded by the same kind of receivers provide a rare opportunity to draw a picture of the ionospheric features characterizing the scintillation conditions over high latitudes. The method adopted is the Ground Based Scintillation Climatology, which produces maps of scintillation occurrence and of TEC relative variation to investigate ionospheric scintillations scenario in terms of geomagnetic and geographic coordinates, Interplanetary Magnetic Field conditions and seasonal variability. By means of such a novel and original description of the ionospheric irregularities, our work provides insights to speculate on the cause-effect mechanisms producing scintillations, suggesting the roles of the high latitude ionospheric trough, of the auroral boundaries and of the polar cap ionosphere in hosting those irregularities causing scintillations over both the hemispheres at high latitude. The method can constitute a first step towards the development of new algorithms to forecast the scintillations during space weather events.
    Description: Published
    Description: RS0D05
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: restricted
    Keywords: ionospheric scintillations ; climatology ; high latitude ionosphere ; space weather ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-03
    Description: We study the 2003 Mw 8.1 Tokachi‐oki earthquake, a great interplate event that occurred along the southwestern Kuril Trench and generated a significant tsunami. To determine the earthquake slip distribution, we perform the first joint inversion of tsunami waveforms measured by tide gauges and of coseismic displacement measured both by GPS stations and three ocean bottom pressure gauges (PG) for this event. The resolution of the different data sets on the slip distribution is assessed by means of several checkerboard tests. Results show that tsunami data constrain the slip distribution offshore, whereas GPS data constrain the slip distribution in the onshore zone. The three PG data only coarsely constrain the offshore slip, indicating that denser networks should be installed close to subduction zones. Combining the three data sets significantly improves the inversion results. Joint inversion of the 2003 Tokachi‐oki earthquake data leads to maximum slip values (∼6 m) confined at depths greater than ∼25 km, between 30 and 80 km northwest of the hypocenter, with a patch of slip (3 m) in the deepest part of the source (∼50 km depth). Slip values are very low (≤1 m) updip from the hypocenter. Furthermore, the rupture does not extend on the plate interface off Akkeshi. As a significant back slip amount (∼4 m) has accumulated there since the last 1952 earthquake, this segment could rupture during the next large interplate event along the Kuril Trench.
    Description: Published
    Description: B11313
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: tsunami ; coseismic displacement ; joint inversion ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...