ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (17,778)
  • Molecular Diversity Preservation International  (10,338)
  • Institute of Electrical and Electronics Engineers (IEEE)  (3,188)
  • MDPI  (2,572)
  • BioMed Central  (1,680)
  • 2020-2022
  • 2015-2019  (15,904)
  • 2010-2014  (1,874)
  • 1990-1994
  • 1945-1949
  • 2018  (15,904)
  • 2011  (1,874)
  • Electrical Engineering, Measurement and Control Technology  (9,880)
  • Computer Science  (4,124)
  • Technology  (2,151)
  • Economics  (1,842)
Collection
  • Articles  (17,778)
Publisher
Years
  • 2020-2022
  • 2015-2019  (15,904)
  • 2010-2014  (1,874)
  • 1990-1994
  • 1945-1949
Year
  • 1
    Publication Date: 2018
    Description: A series of graphite oxide samples were prepared using the modified Hummers method. Flake graphite was used as the raw material and the reaction temperature of the aqueous solution was changed (0 °C, 30 °C, 50 °C, 60 °C, 70 °C, 80 °C, and 100 °C). X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectral analysis, X-ray photoelectron spectroscopy, and contact angle tests were performed to characterize the structure, chemical bonding, type, and content of oxygen-containing functional groups of the graphite oxide samples. The results showed that the type and content of each oxygen-containing functional group could be controlled by changing the reaction temperature with the addition of water. As the temperature of the system increased, the degree of oxidation of the graphite oxide samples first increased and then decreased. Too high a temperature (100 °C) of the system led to the formation of epoxy groups by the decomposition of some hydroxyl groups in the samples, causing the reduction of oxygen-containing functional groups between the graphite layers, poor hydrophilic properties, and low moisture content. When the system temperature was 50 °C, the interlayer spacing of the graphite oxide samples was at its highest, the graphite was completely oxidized (C/O = 1.85), and the oxygen-containing functional groups were mainly composed of hydroxyl groups (accounting for approximately 28.88% of the total oxygen-containing functional groups). The high content of hydroxyl and carboxyl groups had good hydrophilic ability and showed the highest moisture content. The sample at 50 °C had better sensitivity to ammonia because of its high hydroxyl group and carboxyl group content, with the sample showing an excellent profile when the ammonia concentration was 20–60 ppm.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: Ammonia (NH3) emission from agriculture is an environmental threat and a loss of nitrogen for crop production. Mineral fertilizers and manure are significant sources of NH3; therefore, abatement technologies have been introduced to mitigate these emissions. The aim of this study was to demonstrate that low-cost measuring techniques are suitable to assess NH3 emissions in smaller plots, appropriate to test different managements. Two experiments were established to quantify NH3 emissions from urea application in a multi-plot design with radii of 5 (R5) and 20 m (R20). Field was bare soil partially surrounded by shelterbelts. Measurement techniques included passive flux samplers (Leuning), and passive concentration samplers (ALPHA) coupled to WindTrax dispersion model. NH3 emission from R5 was consistent with the emission from R20 when the surface-to-atmosphere exchange was not affected by shelterbelts, and wind speed near surface was greater than 1 m s−1. Both measurement methods gave unreliable NH3 quantification in combination with wind speed lower than 1 m s−1 and low emission strength. Cumulative emission over 60 h was 2% of the supplied N from the plots not affected by the shelterbelt, and 1% from the plots affected by shelterbelts, indicating that these structures can significantly reduce NH3 emissions.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: To achieve superior rice-grain quality, more emphasis has been placed on the genetic diversity of breeding programs, although this improvement could be seriously restricted in the absence of comparable agricultural management practices. Nitrogen (N) application and planting density are two important agronomic practices influencing rice growth, yield, and grain quality. This study investigated the four main aspects of rice-grain quality, namely, milling (brown-rice, milled-rice, and head-rice percentage), appearance (length/width ratio, chalky-kernel percentage, and chalkiness), nutrition (protein content), and cooking and eating quality (apparent amylose content, gel consistency, and pasting viscosities) of two rice cultivars (Shendao 47 and Jingyou 586) under four N rates (0, 140, 180, and 220 kg ha−1), and three planting densities (25 × 104, 16.7 × 104, and 12.5 × 104 hills ha−1) in a field trial from 2015 to 2016. The four main aspects of rice-grain quality were significantly influenced by cultivar. Several aspects were affected by the interactions of N rate and cultivar. No significant interaction between N rate and plating density was detected for all grain-quality parameters. A higher N rate increased the percentages of brown rice and head rice, chalky-kernel percentage, and setback and peak time values, but reduced the length/width ratio, chalkiness, apparent amylose content, gel consistency, and peak-, trough-, and final-viscosity values. These results indicate that the N rate has a beneficial effect on milling and nutritional quality, but a detrimental effect on appearance and cooking and eating quality. Jingyou 586 and Shendao 47 had different responses to planting density in terms of grain quality. Our study indicates that low planting density for Jingyou 586, but a medium one for Shendao 47, is favorable for grain quality.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018
    Description: Time domain reflectometry (TDR) is one of the most widely used techniques for indirect determination of soil volumetric water content (θ). TDR measures the relative dielectric constant (εr) which, in a three-phase system like the soil, depends on water, air, and solid matrix dielectric constants. Since dielectric constant of water is much larger than the other two, εr of bulk soil mainly depends on water content. In many cases, the application of TDR requires a specific calibration of the relationship θ(εr) to get quantitatively accurate estimates of soil water content. In fact, the relationship θ(εr) is influenced by various soil properties, such as clay content, organic matter content, bulk density, and aggregation. Numerous studies have shown that pyroclastic soils often exhibit a peculiar dielectric behavior. In Campania (Southern Italy) wide mountainous areas are covered by layered pyroclastic deposits of ashes (loamy sands) and pumices (sandy gravels), often involved in the triggering of landslides induced by rainwater infiltration. Reliable field measurements of water content of such soils are therefore important for the assessment of landslide risk. Hence, in this paper, the θ(εr) relationship has been experimentally determined on samples of typical pyroclastic soil of Campania, collected around Sarno, reconstituted with different porosities. The aim of the study is to identify specific calibration relationships for such soils based not only on empirical approaches. In this respect, a three-phase dielectric mixing model with a variable exponent is introduced, and the variable value of the exponent is related to the different dielectric properties of bond and free water within the soil pores.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018
    Description: Public key encryption with disjunctive keyword search (PEDK) is a public key encryption scheme that allows disjunctive keyword search over encrypted data without decryption. This kind of scheme is crucial to cloud storage and has received a lot of attention in recent years. However, the efficiency of the previous scheme is limited due to the selection of a less efficient converting method which is used to change query and index keywords into a vector space model. To address this issue, we design a novel converting approach with better performance, and give two adaptively secure PEDK schemes based on this method. The first one is built on an efficient inner product encryption scheme with less searching time, and the second one is constructed over composite order bilinear groups with higher efficiency on index and trapdoor construction. The theoretical analysis and experiment results verify that our schemes are more efficient in time and space complexity as well as more suitable for the mobile cloud setting compared with the state-of-art schemes.
    Electronic ISSN: 2078-2489
    Topics: Computer Science
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018
    Description: Energy efficiency is crucial in the design of battery-powered end devices, such as smart sensors for the Internet of Things applications. Wireless communication between these distributed smart devices consumes significant energy, and even more when data need to reach several kilometers in distance. Low-power and long-range communication technologies such as LoRaWAN are becoming popular in IoT applications. However, LoRaWAN has drawbacks in terms of (i) data latency; (ii) limited control over the end devices by the gateway; and (iii) high rate of packet collisions in a dense network. To overcome these drawbacks, we present an energy-efficient network architecture and a high-efficiency on-demand time-division multiple access (TDMA) communication protocol for IoT improving both the energy efficiency and the latency of standard LoRa networks. We combine the capabilities of short-range wake-up radios to achieve ultra-low power states and asynchronous communication together with the long-range connectivity of LoRa. The proposed approach still works with the standard LoRa protocol, but improves performance with an on-demand TDMA. Thanks to the proposed network and protocol, we achieve a packet delivery ratio of 100% by eliminating the possibility of packet collisions. The network also achieves a round-trip latency on the order of milliseconds with sensing devices dissipating less than 46 mJ when active and 1.83 μ W during periods of inactivity and can last up to three years on a 1200-mAh lithium polymer battery.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018
    Description: Plant roots play a significant role in plant growth by exploiting soil resources via the uptake of water and nutrients. Root traits such as fine root diameter, specific root length, specific root area, root angle, and root length density are considered useful traits for improving plant productivity under drought conditions. Therefore, understanding interactions between roots and their surrounding soil environment is important, which can be improved through root phenotyping. With the advancement in technologies, many tools have been developed for root phenotyping. Canopy temperature depression (CTD) has been considered a good technique for field phenotyping of crops under drought and is used to estimate crop yield as well as root traits in relation to drought tolerance. Both laboratory and field-based methods for phenotyping root traits have been developed including soil sampling, mini-rhizotron, rhizotrons, thermography and non-soil techniques. Recently, a non-invasive approach of X-ray computed tomography (CT) has provided a break-through to study the root architecture in three dimensions (3-D). This review summarizes methods for root phenotyping. On the basis of this review, it can be concluded that root traits are useful characters to be included in future breeding programs and for selecting better cultivars to increase crop yield under water-limited environments.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018
    Description: Wu et al. (2014) showed that under the small set expansion hypothesis (SSEH) there is no polynomial time approximation algorithm with any constant approximation factor for several graph width parameters, including tree-width, path-width, and cut-width (Wu et al. 2014). In this paper, we extend this line of research by exploring other graph width parameters: We obtain similar approximation hardness results under the SSEH for rank-width and maximum induced matching-width, while at the same time we show the approximation hardness of carving-width, clique-width, NLC-width, and boolean-width. We also give a simpler proof of the approximation hardness of tree-width, path-width, and cut-widththan that of Wu et al.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018
    Description: Accurately measuring the number of viable microorganisms plays an essential role in microbiological studies. Since the conventional agar method of enumerating visible colonies is time-consuming and not accurate, efforts have been made towards overcoming these limitations by counting the invisible micro-colonies. However, none of studies on micro-colony counting was able to save significant time or provide accurate results. Herein, we developed an on-glass-slide cell culture device that enables rapid formation of micro-colonies on a 0.38 mm-thick gel film without suffering from nutrient and oxygen deprivation during bacteria culturing. Employing a phase contrast imaging setup, we achieved rapid microscopic scanning of micro-colonies within a large sample area on the thin film without the need of fluorescent staining. Using Escherichia coli (E. coli) as a demonstration, our technique was able to shorten the culturing time to within 5 h and automatically enumerate the micro-colonies from the phase contrast images. Moreover, this method delivered more accurate counts than the conventional visible colony counting methods. Due to these advantages, this imaging-based micro-colony enumeration technique provides a new platform for the quantification of viable microorganisms.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018
    Description: Global registration is an important step in the three-dimensional reconstruction of multi-view laser point clouds for moving objects, but the severe noise, density variation, and overlap ratio between multi-view laser point clouds present significant challenges to global registration. In this paper, a multi-view laser point cloud global registration method based on low-rank sparse decomposition is proposed. Firstly, the spatial distribution features of point clouds were extracted by spatial rasterization to realize loop-closure detection, and the corresponding weight matrix was established according to the similarities of spatial distribution features. The accuracy of adjacent registration transformation was evaluated, and the robustness of low-rank sparse matrix decomposition was enhanced. Then, the objective function that satisfies the global optimization condition was constructed, which prevented the solution space compression generated by the column-orthogonal hypothesis of the matrix. The objective function was solved by the Augmented Lagrange method, and the iterative termination condition was designed according to the prior conditions of single-object global registration. The simulation analysis shows that the proposed method was robust with a wide range of parameters, and the accuracy of loop-closure detection was over 90%. When the pairwise registration error was below 0.1 rad, the proposed method performed better than the three compared methods, and the global registration accuracy was better than 0.05 rad. Finally, the global registration results of real point cloud experiments further proved the validity and stability of the proposed method.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018
    Description: Recently, modern smartphones equipped with a variety of embedded-sensors, such as accelerometers and gyroscopes, have been used as an alternative platform for human activity recognition (HAR), since they are cost-effective, unobtrusive and they facilitate real-time applications. However, the majority of the related works have proposed a position-dependent HAR, i.e., the target subject has to fix the smartphone in a pre-defined position. Few studies have tackled the problem of position-independent HAR. They have tackled the problem either using handcrafted features that are less influenced by the position of the smartphone or by building a position-aware HAR. The performance of these studies still needs more improvement to produce a reliable smartphone-based HAR. Thus, in this paper, we propose a deep convolution neural network model that provides a robust position-independent HAR system. We build and evaluate the performance of the proposed model using the RealWorld HAR public dataset. We find that our deep learning proposed model increases the overall performance compared to the state-of-the-art traditional machine learning method from 84% to 88% for position-independent HAR. In addition, the position detection performance of our model improves superiorly from 89% to 98%. Finally, the recognition time of the proposed model is evaluated in order to validate the applicability of the model for real-time applications.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018
    Description: Current bias compensation methods for distributed localization consider the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements noise, but ignore the negative influence by the sensor location uncertainties on source localization accuracy. Therefore, a new bias compensation method for distributed localization is proposed to improve the localization accuracy in this paper. This paper derives the theoretical bias of maximum likelihood estimation when the sensor location errors and positioning measurements noise both exist. Using the rough estimate result by MLE to subtract the theoretical bias can obtain a more accurate source location estimation. Theoretical analysis and simulation results indicate that the theoretical bias derived in this paper matches well with the actual bias in moderate noise level so that it can prove the correctness of the theoretical derivation. Furthermore, after bias compensation, the estimate accuracy of the proposed method achieves a certain improvement compared with existing methods.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018
    Description: A novel ultraviolet (UV) optical fiber sensor (UVOFS) based on the scintillating material La2O2S:Eu has been designed, tested, and its performance compared with other scintillating materials and other conventional UV detectors. The UVOFS is based on PMMA (polymethyl methacrylate) optical fiber which includes a scintillating material. Scintillating materials provide a unique opportunity to measure UV light intensity even in the presence of strong electromagnetic interference. Five scintillating materials were compared in order to select the most appropriate one for the UVOFS. The characteristics of the sensor are reported, including a highly linear response to radiation intensity, reproducibility, temperature response, and response time (to pulsed light) based on emission from a UV source (UV fluorescence tube) centered on a wavelength of 308 nm. A direct comparison with the commercially available semiconductor-based UV sensor proves the UVOFS of this investigation shows superior performance in terms of accuracy, long-term reliability, response time and linearity.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018
    Description: This paper proposes a new interferometric near-field 3-D imaging approach based on multi-channel joint sparse reconstruction to solve the problems of conventional methods, i.e., the irrespective correlation of different channels in single-channel independent imaging which may lead to deviated positions of scattering points, and the low accuracy of imaging azimuth angle for real anisotropic targets. Firstly, two full-apertures are divided into several sub-apertures by the same standard; secondly, the joint sparse metric function is constructed based on scattering characteristics of the target in multi-channel status, and the improved Orthogonal Matching Pursuit (OMP) method is used for imaging solving, so as to obtain high-precision 3-D image of each sub-aperture; thirdly, comprehensive sub-aperture processing is performed using all sub-aperture 3-D images to obtain the final 3-D images; finally, validity of the proposed approach is verified by using simulation electromagnetic data and data measured in the anechoic chamber. Experimental results show that, compared with traditional interferometric ISAR imaging approaches, the algorithm proposed in this paper is able to provide a higher accuracy in scattering center reconstruction, and can effectively maintain relative phase information of channels.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018
    Description: New amphiphilic star or multi-arm block copolymers with different structures were synthesized for enabling the use of hydrophobic oxygen probe of platinum (II)-tetrakis (pentafluorophenyl) porphyrin (PtTFPP) for bioanalysis. The amphiphilic star polymers were prepared through the Atom Transfer Radical Polymerization (ATRP) method by using hydrophilic 4-arm polyethylene glycol (4-arm-PEG) as an initiator. Among the five block copolymers, P1 series (P1a, P1b, and P1c) and P3 possess fluorine-containing moieties to improve the oxygen sensitivity with its excellent capacity to dissolve and carry oxygen. A polymer P2 without fluorine units was also synthesized for comparison. The structure-property relationship was investigated. Under nitrogen atmosphere, high quantum efficiency of PtTFPP in fluorine-containing micelles could reach to 22% and long lifetime could reach to 76 μs. One kind of representative PtTFPP-containing micelles was used to detect the respiration of Escherichia coli (E. coli) JM109 and macrophage cell J774A.1 by a high throughput plate reader. In vivo hypoxic imaging of tumor-bearing mice was also achieved successfully. This study demonstrated that using well-designed fluoropolymers to load PtTFPP could achieve high oxygen sensing properties, and long lifetime, showing the great capability for further in vivo sensing and imaging.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018
    Description: The development of smart cities calls for improved accuracy in navigation and positioning services; due to the effects of satellite orbit error, ionospheric error, poor quality of navigation signals and so on, it is difficult for existing navigation technology to achieve further improvements in positioning accuracy. Distributed cooperative positioning technology can further improve the accuracy of navigation and positioning with existing GNSS (Global Navigation Satellite System) systems. However, the measured range error and the positioning error of the cooperative nodes exhibit larger reductions in positioning accuracy. In response to this question, this paper proposed a factor graph-aided distributed cooperative positioning algorithm. It establishes the confidence function of factor graphs theory with the ranging error and the positioning error of the coordinated nodes and then fuses the positioning information of the coordinated nodes by the confidence function. It can avoid the influence of positioning error and ranging error and improve the positioning accuracy of cooperative nodes. In the simulation part, the proposed algorithm is compared with a mainly coordinated positioning algorithm from four aspects: the measured range error, positioning error, convergence speed, and mutation error. The simulation results show that the proposed algorithm leads to a 30–60% improvement in positioning accuracy compared with other algorithms under the same measured range error and positioning error. The convergence rate and mutation error elimination times are only 1 / 5 to 1 / 3 of the other algorithms.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018
    Description: The amperometric determination of cysteine, using an electrode based on ternary silver-copper sulfide, is presented. Electrochemical characterizations (using cyclic voltammetry) of three electrode materials revealed that the electrode based on the material that consists of jalpaite (Ag3CuS2), doped with a small amount of metallic silver, has the best electrocatalytical performance for cysteine oxidation. For the amperometric determination, 0.142 V at pH 5 and 0.04 V at pH 7 vs. Ag/AgCl, related to the electrocatalytical oxidation of thiol group, were chosen. Electrochemical impedance spectroscopy together with Fourier transform infrared spectroscopy (FTIR) revealed that oxidation takes place on the electrode surface with fouling effect, which does not affect a wide linear working range between 1 μM and 100 μM. Sensitivities, at pH 5 and pH 7, are calculated to be 0.11 μA μM−1 and 0.10 μA μM−1, respectively. The detection limits were determined to be 0.036 μM and 0.024 μM for pH 5 and pH 7, respectively. In the presence of uric acid, folic acid, ascorbic acid, and glucose no interference was noticed. This electrode showed remarkable stability and excellent reproducibility. The electrode was exploited for the determination of cysteine in a dietary supplement with the excellent recoveries.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018
    Description: Drones have recently become extremely popular, especially in military and civilian applications. Examples of drone utilization include reconnaissance, surveillance, and packet delivery. As time has passed, drones’ tasks have become larger and more complex. As a result, swarms or clusters of drones are preferred, because they offer more coverage, flexibility, and reliability. However, drone systems have limited computing power and energy resources, which means that sometimes it is difficult for drones to finish their tasks on schedule. A solution to this is required so that drone clusters can complete their work faster. One possible solution is an offloading scheme between drone clusters. In this study, we propose an opportunistic computational offloading system, which allows for a drone cluster with a high intensity task to borrow computing resources opportunistically from other nearby drone clusters. We design an artificial neural network-based response time prediction module for deciding whether it is faster to finish tasks by offloading them to other drone clusters. The offloading scheme is conducted only if the predicted offloading response time is smaller than the local computing time. Through simulation results, we show that our proposed scheme can decrease the response time of drone clusters through an opportunistic offloading process.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018
    Description: When the nodes in the network are deployed in the target area with an appropriate density, the effective aggregation and transmission of the data gathered in the monitoring area remain to be solved. The existing Compressed Sensing (CS) based on data aggregation schemes are accomplished in a centralized manner and the Sink node achieves the task of data aggregation. However, these existing schemes may suffer from load imbalance and coverage void issues. In order to address these problems, we propose a Compressed Sensing based on Fault-tolerant Correcting Data Aggregation (CS-FCDA) scheme to accurately reconstruct the compressed data. Therefore, the network communication overhead can be greatly reduced while maintaining the quality of the reconstructed data. Meanwhile, we adopt the node clustering mechanism to optimize and balance the network load. It is shown via simulation results, compared with other data aggregation schemes, that the proposed scheme shows obvious improvement in terms of the Fault-tolerant correcting capability and the network energy efficiency of the data reconstruction.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018
    Description: Knowledge about seasonal and litter bag soil position effects on litter decomposition (k value), mineralization and nitrification rate of annual legumes in Puerto Rico is limited. This study determined dry matter yield (DMY), k value of litter bags placed below and above the soil surface, mineralization and nitrification rates of Lablab purpureus cv. “Rongai” and Mucuna pruriens (Velvet bean) seeded in the wet and dry season in Oxisol soils (Typic Eustrustox). There was an interaction (p 〈 0.05) for season and legumes on DMY, k value and N content. “Rongai” DMY was higher for the dry than wet season while Velvet bean had an opposite seasonal response. Higher k value occurred in the wet season for legumes, but “Rongai” had higher k than Velvet bean. For both legumes, N content was higher on litter bag placed below-ground in both seasons. However, in the wet season, there was less N in the above ground litter position. Higher inorganic N was observed at 90 days of soil incubation (DOI) suggesting that N was not available prior to 42 DOI. Nitrification rate was higher for “Rongai” at 22 DOI and lower at 42 and 90 DOI for both legumes. Both legumes enhanced inorganic N, but, regardless of season, Rongai supplied nutrients to the soil faster than Velvet bean. “Rongai” because of its higher k value than Velvet bean is recommended for fast growing row or vegetable crops in Puerto Rico.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018
    Description: Drought stress is one of the most adverse environmental limiting factors for wheat (Triticum aestivum L.) productivity worldwide. For better understanding of the molecular mechanism of wheat in response to drought, a comparative transcriptome approach was applied to investigate the gene expression change of two wheat cultivars, Jimai No. 47 (drought-tolerant) and Yanzhan No. 4110 (drought-sensitive) in the field under irrigated and drought-stressed conditions. A total of 3754 and 2325 differential expressed genes (DEGs) were found in Jimai No. 47 and Yanzhan No. 4110, respectively, of which 377 genes were overlapped, which could be considered to be the potential drought-responsive genes. GO (Gene Ontology) analysis showed that these DEGs of tolerant genotype were significantly enriched in signaling transduction and MAP (mitogen-activated protein) kinase activity, while that of sensitive genotype was involved in photosynthesis, membrane protein complex, and guard cell differentiation. Furthermore, 32 and 2 RNA editing sites were identified in drought-tolerant and sensitive genotypes under drought compared to irrigation, demonstrating that RNA editing also plays an important role in response to drought in wheat. This study investigated the gene expression pattern and RNA editing sites of two wheat cultivars with contrasting tolerance in field condition, which will contribute to a better understanding of the molecular mechanism of drought tolerance in wheat and beyond.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018
    Description: As one of the key crop traits, plant height is traditionally evaluated manually, which can be slow, laborious and prone to error. Rapid development of remote and proximal sensing technologies in recent years allows plant height to be estimated in more objective and efficient fashions, while research regarding direct comparisons between different height measurement methods seems to be lagging. In this study, a ground-based multi-sensor phenotyping system equipped with ultrasonic sensors and light detection and ranging (LiDAR) was developed. Canopy heights of 100 wheat plots were estimated five times during a season by the ground phenotyping system and an unmanned aircraft system (UAS), and the results were compared to manual measurements. Overall, LiDAR provided the best results, with a root-mean-square error (RMSE) of 0.05 m and an R2 of 0.97. UAS obtained reasonable results with an RMSE of 0.09 m and an R2 of 0.91. Ultrasonic sensors did not perform well due to our static measurement style. In conclusion, we suggest LiDAR and UAS are reliable alternative methods for wheat height evaluation.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018
    Description: Efficient matching of incoming events of data streams to persistent queries is fundamental to event stream processing systems in wireless sensor networks. These applications require dealing with high volume and continuous data streams with fast processing time on distributed complex event processing (CEP) systems. Therefore, a well-managed parallel processing technique is needed for improving the performance of the system. However, the specific properties of pattern operators in the CEP systems increase the difficulties of the parallel processing problem. To address these issues, a parallelization model and an adaptive parallel processing strategy are proposed for the complex event processing by introducing a histogram and utilizing the probability and queue theory. The proposed strategy can estimate the optimal event splitting policy, which can suit the most recent workload conditions such that the selected policy has the least expected waiting time for further processing of the arriving events. The proposed strategy can keep the CEP system running fast under the variation of the time window sizes of operators and the input rates of streams. Finally, the utility of our work is demonstrated through the experiments on the StreamBase system.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018
    Description: 360-degree video streaming for high-quality virtual reality (VR) is challenging for current wireless systems because of the huge bandwidth it requires. However, millimeter wave (mmWave) communications in the 60 GHz band has gained considerable interest from the industry and academia because it promises gigabit wireless connectivity in the huge unlicensed bandwidth (i.e., up to 7 GHz). This massive unlicensed bandwidth offers great potential for addressing the demand for 360-degree video streaming. This paper investigates the problem of 360-degree video streaming for mobile VR using the SHVC, the scalable of High-Efficiency Video Coding (HEVC) standard and PC offloading over 60 GHz networks. We present a conceptual architecture based on advanced tiled-SHVC and mmWave communications. This architecture comprises two main parts. (1) Tile-based SHVC for 360-degree video streaming and optimizing parallel decoding. (2) Personal Computer (PC) offloading mechanism for transmitting uncompressed video (viewport only). The experimental results show that our tiled extractor method reduces the bandwidth required for 360-degree video streaming by more than 47% and the tile partitioning mechanism was improved by up to 25% in terms of the decoding time. The PC offloading mechanism was also successful in offloading 360-degree decoded (or viewport only) video to mobile devices using mmWave communication and the proposed transmission schemes.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018
    Description: This paper develops a bias compensation-based parameter and state estimation algorithm for the observability canonical state-space system corrupted by colored noise. The state-space system is transformed into a linear regressive model by eliminating the state variables. Based on the determination of the noise variance and noise model, a bias correction term is added into the least squares estimate, and the system parameters and states are computed interactively. The proposed algorithm can generate the unbiased parameter estimate. Two illustrative examples are given to show the effectiveness of the proposed algorithm.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018
    Description: In the experiment of inertial confinement fusion, soft X-ray spectrum unfolding can provide important information to optimize the design of the laser and target. As the laser beams increase, there are limited locations for installing detection channels to obtain measurements, and the soft X-ray spectrum can be difficult to recover. In this paper, a novel recovery method of soft X-ray spectrum unfolding based on compressive sensing is proposed, in which (1) the spectrum recovery is formulated as a problem of accurate signal recovery from very few measurements (i.e., compressive sensing), and (2) the proper basis atoms are selected adaptively over a Legendre orthogonal basis dictionary with a large size and Lasso regression in the sense of ℓ1 norm, which enables the spectrum to be accurately recovered with little measured data from the limited detection channels. Finally, the presented approach is validated with experimental data. The results show that it can still achieve comparable accuracy from only 8 spectrometer detection channels as it has previously done from 14 detection channels. This means that the presented approach is capable of recovering spectrum from the data of limited detection channels, and it can be used to save more space for other detectors.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018
    Description: Recently, the emergence of low-cost sensors have allowed electronic noses to be considered for densifying the actual air pollution monitoring networks in urban areas. Electronic noses are affected by changes in environmental conditions and sensor drifts over time. Therefore, they need to be calibrated periodically and also individually because the characteristics of identical sensors are slightly different. For these reasons, the calibration process has become very expensive and time consuming. To cope with these drawbacks, calibration transfer between systems constitutes a satisfactory alternative. Among them, direct standardization shows good efficiency for calibration transfer. In this paper, we propose to improve this method by using kernel SPXY (sample set partitioning based on joint x-y distances) for data selection and support vector machine regression to match between electronic noses. The calibration transfer approach introduced in this paper was tested using two identical electronic noses dedicated to monitoring nitrogen dioxide. Experimental results show that our method gave the highest efficiency compared to classical direct standardization.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018
    Description: By means of the time derivatives of Global Navigation Satellite System (GNSS) carrier-phase measurements, the instantaneous velocity of a stand-alone, single GNSS receiver can be estimated with a high precision of a few mm/s; it is feasible to even obtain the level of tenths of mm/s. Therefore, only data from the satellite navigation message are needed, thus discarding any data from a reference network. Combining this method with an efficient movement-detection algorithm opens some interesting applications for geohazard monitoring; an example is the detection of strong earthquakes. This capability is demonstrated for a case study of the 6.5 Mw earthquake of October 30, 2016, near the city of Norcia in Italy; in that region, there are densely deployed GNSS stations. It is shown that GNSS sensors can detect seismic compressional (P) waves, which are the first to arrive at a measurement station. These findings are substantiated by a comparison with data of strong-motion (SM) seismometers. Furthermore, it is shown that the GNSS-only hypocenter localization comes close (less than a kilometer) to the solutions provided by official seismic services. Finally, we conclude that this method can provide important contributions to a real-time geohazard early-warning system.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018
    Description: Since the 1940s, infrared (IR) detection and imaging at wavelengths in the two atmospheric windows of 3 to 5 and 8 to 14 μm has been extensively researched. Through several generations, these detectors have undergone considerable developments and have found use in various applications in different fields including military, space science, medicine and engineering. For the most recently proposed generation, these detectors are required to achieve high-speed detection with spectral and polarization selectivity while operating at room temperature. Antenna coupled IR detectors appear to be the most promising candidate to achieve these requirements and has received substantial attention from research in recent years. This paper sets out to present a review of the antenna coupled IR detector family, to explore the main concepts behind the detectors as well as outline their critical and challenging design considerations. In this context, the design of both elements, the antenna and the sensor, will be presented individually followed by the challenging techniques in the impedance matching between both elements. Some hands-on fabrication techniques will then be explored. Finally, a discussion on the coupled IR detector is presented with the aim of providing some useful insights into promising future work.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018
    Description: The publication presents a comparative study of two fibre-optic sensors in the application of heart rate (HR) and respiratory rate (RR) monitoring of the human body. After consultation with clinical practitioners, two types of non-invasive measuring and analysis systems based on fibre Bragg grating (FBG) and fibre-optic interferometer (FOI) have been designed and assembled. These systems use probes (both patent pending) that have been encapsulated in the bio-compatible polydimethylsiloxane (PMDS). The main advantage of PDMS is that it is electrically non-conductive and, as well as optical fibres, has low permeability. The initial verification measurement of the system designed was performed on four subjects in a harsh magnetic resonance (MR) environment under the supervision of a senior radiology assistant. A follow-up comparative study was conducted, upon a consent of twenty volunteers, in a laboratory environment with a minimum motion load and discussed with a head doctor of the Radiodiagnostic Institute. The goal of the laboratory study was to perform measurements that would simulate as closely as possible the environment of harsh MR or the environment of long-term health care facilities, hospitals and clinics. Conventional HR and RR measurement systems based on ECG measurements and changes in the thoracic circumference were used as references. The data acquired was compared by the objective Bland–Altman (B–A) method and discussed with practitioners. The results obtained confirmed the functionality of the designed probes, both in the case of RR and HR measurements (for both types of B–A, more than 95% of the values lie within the ±1.96 SD range), while demonstrating higher accuracy of the interferometric probe (in case of the RR determination, 95.66% for the FOI probe and 95.53% for the FBG probe, in case of the HR determination, 96.22% for the FOI probe and 95.23% for the FBG probe).
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018
    Description: Three-dimensional (3D) imaging has attracted more and more interest because of its widespread applications, especially in information and life science. These techniques can be broadly divided into two types: ray-based and wavefront-based 3D imaging. Issues such as imaging quality and system complexity of these techniques limit the applications significantly, and therefore many investigations have focused on 3D imaging from depth measurements. This paper presents an overview of 3D imaging from depth measurements, and provides a summary of the connection between the ray-based and wavefront-based 3D imaging techniques.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018
    Description: Optical communication promises to be a high-rate supplement for acoustic communication in short-range underwater applications. In the photic zone of oceanic and coastal waters, underwater optical communication systems are exposed by remaining sunlight. This ambient light generates additional noise in photodetectors, thus degrading system performance. This effect can be diminished by the use of optical filters. This paper investigates light field characteristics of different water types and potential interactions with optical underwater communication. A colored glass and different thin film bandpass filters are examined as filter/detector combinations under varying light and water conditions, and their physical constraints are depicted. This is underlined by various spectral measurements as well as optical signal-to-noise ratio calculations. The importance of matching the characteristics of the light emitting diode (LED) light source, the photodetector, and the filter on the ambient conditions using wider angle of incidents is emphasized.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018
    Description: In this paper, the design of MEMS piezoresistive out-of-plane shear and normal stress sensor is described. To improve the sensor sensitivity, a methodology by the incorporation of stress concentration regions, namely surface trenches in the proximity of sensing elements was explored in detail. The finite element (FE) model, verified by a five-layer analytical model was developed as a tool to model the performance of the sensor and guide the geometric optimization of the surface trenches. Optimum location and dimensions of the surface trenches have been obtained through a comprehensive FE analysis. The microfabrication and packing scheme was introduced to prototype the sensor with optimum geometric characteristics of surface trenches. Signal output from the prototyped sensor was tested and compared with those from FE simulation. Good agreement has been achieved between the simulation and experimental results. Moreover, the results suggest the incorporation of surface trenches can help improve the sensor sensitivity. More specifically, the sum of signal output from the sensor chip with surface trenches are 4.52, 5.06 and 5.72 times higher compared to flat sensor chip for center sensing area, edge sensing areas 1 and 2, respectively.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018
    Description: Clean-in-place (CIP) processes are extensively used to clean industrial equipment without the need for disassembly. In food manufacturing, cleaning can account for up to 70% of water use and is also a heavy user of energy and chemicals. Due to a current lack of real-time in-process monitoring, the non-optimal control of the cleaning process parameters and durations result in excessive resource consumption and periods of non-productivity. In this paper, an optical monitoring system is designed and realized to assess the amount of fouling material remaining in process tanks, and to predict the required cleaning time. An experimental campaign of CIP tests was carried out utilizing white chocolate as fouling medium. During the experiments, an image acquisition system endowed with a digital camera and ultraviolet light source was employed to collect digital images from the process tank. Diverse image segmentation techniques were considered to develop an image processing procedure with the aim of assessing the area of surface fouling and the fouling volume throughout the cleaning process. An intelligent decision-making support system utilizing nonlinear autoregressive models with exogenous inputs (NARX) Neural Network was configured, trained and tested to predict the cleaning time based on the image processing results. Results are discussed in terms of prediction accuracy and a comparative study on computation time against different image resolutions is reported. The potential benefits of the system for resource and time efficiency in food manufacturing are highlighted.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018
    Description: Bluetooth Low-Energy (BLE) beacons-based indoor positioning is a promising method for indoor positioning, especially in applications of position-based services (PbS). It has low deployment cost and it is suitable for a wide range of mobile devices. Existing BLE beacon-based positioning methods can be categorized as range-based methods and fingerprinting-based methods. For range-based methods, the positions of the beacons should be known before positioning. For fingerprinting-based methods, a pre-requisite is the reference fingerprinting map (RFM). Many existing methods focus on how to perform the positioning assuming the beacon positions or RFM are known. However, in practical applications, determining the beacon positions or RFM in the indoor environment is normally a difficult task. This paper proposed an efficient and graph optimization-based way for estimating the beacon positions and the RFM, which combines the range-based method and the fingerprinting-based method. The method exists without need for any dedicated surveying instruments. A user equipped with a BLE-enabled mobile device walks in the region collecting inertial readings and BLE received signal strength indication (RSSI) readings. The inertial measurements are processed through the pedestrian dead reckoning (PDR) method to generate the constraints at adjacent poses. In addition, the BLE fingerprints are adopted to generate constraints between poses (with similar fingerprints) and the RSSIs are adopted to generate distance constraints between the poses and the beacon positions (according to a pre-defined path-loss model). The constraints are then adopted to form a cost function with a least square structure. By minimizing the cost function, the optimal user poses at different times and the beacon positions are estimated. In addition, the RFM can be generated through the pose estimations. Experiments are carried out, which validates that the proposed method for estimating the pre-requisites (including beacon positions and the RFM). These estimated pre-requisites are of sufficient quality for both range-based and fingerprinting-based positioning.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018
    Description: Detecting the cognitive profiles of learners is an important step towards personalized and adaptive learning. Electroencephalograms (EEG) have been used to detect the subject’s emotional and cognitive states. In this paper, an approach for detecting two cognitive skills, focused attention and working memory, using EEG signals is proposed. The proposed approach consists of the following main steps: first, subjects undergo a scientifically-validated cognitive assessment test that stimulates and measures their full cognitive profile while putting on a 14-channel wearable EEG headset. Second, the scores of focused attention and working memory are extracted and encoded for a classification problem. Third, the collected EEG data are analyzed and a total of 280 time- and frequency-domain features are extracted. Fourth, several classifiers were trained to correctly classify and predict three levels (low, average, and high) of the two cognitive skills. The classification accuracies that were obtained on 86 subjects were 84% and 81% for the focused attention and working memory, respectively. In comparison with similar approaches, the obtained results indicate the generalizability and suitability of the proposed approach for the detection of these two skills. Thus, the presented approach can be used as a step towards adaptive learning where real-time adaptation is to be done according to the predicted levels of the measured cognitive skills.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018
    Description: GPS trajectories generated by moving objects provide researchers with an excellent resource for revealing patterns of human activities. Relevant research based on GPS trajectories includes the fields of location-based services, transportation science, and urban studies among others. Research relating to how to obtain GPS data (e.g., GPS data acquisition, GPS data processing) is receiving significant attention because of the availability of GPS data collecting platforms. One such problem is the GPS data classification based on transportation mode. The challenge of classifying trajectories by transportation mode has approached detecting different modes of movement through the application of several strategies. From a GPS data acquisition point of view, this paper macroscopically classifies the transportation mode of GPS data into single-mode and mixed-mode. That means GPS trajectories collected based on one type of transportation mode are regarded as single-mode data; otherwise it is considered as mixed-mode data. The one big difference of classification strategy between single-mode and mixed-mode GPS data is whether we need to recognize the transition points or activity episodes first. Based on this, we systematically review existing classification methods for single-mode and mixed-mode GPS data and introduce the contributions of these methods as well as discuss their unresolved issues to provide directions for future studies in this field. Based on this review and the transportation application at hand, researchers can select the most appropriate method and endeavor to improve them.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018
    Description: Personalized emotion recognition provides an individual training model for each target user in order to mitigate the accuracy problem when using general training models collected from multiple users. Existing personalized speech emotion recognition research has a cold-start problem that requires a large amount of emotionally-balanced data samples from the target user when creating the personalized training model. Such research is difficult to apply in real environments due to the difficulty of collecting numerous target user speech data with emotionally-balanced label samples. Therefore, we propose the Robust Personalized Emotion Recognition Framework with the Adaptive Data Boosting Algorithm to solve the cold-start problem. The proposed framework incrementally provides a customized training model for the target user by reinforcing the dataset by combining the acquired target user speech with speech from other users, followed by applying SMOTE (Synthetic Minority Over-sampling Technique)-based data augmentation. The proposed method proved to be adaptive across a small number of target user datasets and emotionally-imbalanced data environments through iterative experiments using the IEMOCAP (Interactive Emotional Dyadic Motion Capture) database.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018
    Description: We demonstrate that the rectifying field effect transistor, biased to the subthreshold regime, in a large signal regime exhibits a super-linear response to the incident terahertz (THz) power. This phenomenon can be exploited in a variety of experiments which exploit a nonlinear response, such as nonlinear autocorrelation measurements, for direct assessment of intrinsic response time using a pump-probe configuration or for indirect calibration of the oscillating voltage amplitude, which is delivered to the device. For these purposes, we employ a broadband bow-tie antenna coupled Si CMOS field-effect-transistor-based THz detector (TeraFET) in a nonlinear autocorrelation experiment performed with picoseconds-scale pulsed THz radiation. We have found that, in a wide range of gate bias (above the threshold voltage V th = 445 mV), the detected signal follows linearly to the emitted THz power. For gate bias below the threshold voltage (at 350 mV and below), the detected signal increases in a super-linear manner. A combination of these response regimes allows for performing nonlinear autocorrelation measurements with a single device and avoiding cryogenic cooling.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018
    Description: Respiratory rate (RR) is a key parameter used in healthcare for monitoring and predicting patient deterioration. However, continuous and automatic estimation of this parameter from wearable sensors is still a challenging task. Various methods have been proposed to estimate RR from wearable sensors using windowed segments of the data; e.g., often using a minimum of 32 s. Little research has been reported in the literature concerning the instantaneous detection of respiratory rate from such sources. In this paper, we develop and evaluate a method to estimate instantaneous respiratory rate (IRR) from body-worn reflectance photoplethysmography (PPG) sensors. The proposed method relies on a nonlinear time-frequency representation, termed the wavelet synchrosqueezed transform (WSST). We apply the latter to derived modulations of the PPG that arise from the act of breathing.We validate the proposed algorithm using (i) a custom device with a PPG probe placed on various body positions and (ii) a commercial wrist-worn device (WaveletHealth Inc., Mountain View, CA, USA). Comparator reference data were obtained via a thermocouple placed under the nostrils, providing ground-truth information concerning respiration cycles. Tracking instantaneous frequencies was performed in the joint time-frequency spectrum of the (4 Hz re-sampled) respiratory-induced modulation using the WSST, from data obtained from 10 healthy subjects. The estimated instantaneous respiratory rates have shown to be highly correlated with breath-by-breath variations derived from the reference signals. The proposed method produced more accurate results compared to averaged RR obtained using 32 s windows investigated with overlap between successive windows of (i) zero and (ii) 28 s. For a set of five healthy subjects, the averaged similarity between reference RR and instantaneous RR, given by the longest common subsequence (LCSS) algorithm, was calculated as 0.69; this compares with averaged similarity of 0.49 using 32 s windows with 28 s overlap between successive windows. The results provide insight into estimation of IRR and show that upper body positions produced PPG signals from which a better respiration signal was extracted than for other body locations.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018
    Description: The Recurrent Neural Network (RNN) utilizes dynamically changing time information through time cycles, so it is very suitable for tasks with time sequence characteristics. However, with the increase of the number of layers, the vanishing gradient occurs in the RNN. The Grid Long Short-Term Memory (GridLSTM) recurrent neural network can alleviate this problem in two dimensions by taking advantage of the two dimensions calculated in time and depth. In addition, the time sequence task is related to the information of the current moment before and after. In this paper, we propose a method that takes into account context-sensitivity and gradient problems, namely the Bidirectional Grid Long Short-Term Memory (BiGridLSTM) recurrent neural network. This model not only takes advantage of the grid architecture, but it also captures information around the current moment. A large number of experiments on the dataset LibriSpeech show that BiGridLSTM is superior to other deep LSTM models and unidirectional LSTM models, and, when compared with GridLSTM, it gets about 26 percent gain improvement.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018
    Description: Engagement is described as a state in which an individual involved in an activity can ignore other influences. The engagement level is important to obtaining good performance especially under study conditions. Numerous methods using electroencephalograph (EEG), electrocardiograph (ECG), and near-infrared spectroscopy (NIRS) for the recognition of engagement have been proposed. However, the results were either unsatisfactory or required many channels. In this study, we introduce the implementation of a low-density hybrid system for engagement recognition. We used a two-electrode wireless EEG, a wireless ECG, and two wireless channels NIRS to measure engagement recognition during cognitive tasks. We used electrooculograms (EOG) and eye tracking to record eye movements for data labeling. We calculated the recognition accuracy using the combination of correlation-based feature selection and k-nearest neighbor algorithm. Following that, we did a comparative study against a stand-alone system. The results show that the hybrid system had an acceptable accuracy for practical use (71.65 ± 0.16%). In comparison, the accuracy of a pure EEG system was (65.73 ± 0.17%), pure ECG (67.44 ± 0.19%), and pure NIRS (66.83 ± 0.17%). Overall, our results demonstrate that the proposed method can be used to improve performance in engagement recognition.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018
    Description: Recently, a project was initiated in Japan to transport a large amount of liquid hydrogen (LH2) from Australia to Japan by sea. It is important to understand the sloshing and boil-off that are likely to occur inside an LH2 tank during marine transportation by ship, but such characteristics are yet to be experimentally clarified. To do so, we combined the liquid level detected by five 500 mm long external-heating-type magnesium diboride (MgB2) level sensors with synchronous measurements of temperature, pressure, ship motion, and acceleration during a zigzag maneuver. During this zigzag maneuver, the pressure of gaseous hydrogen (GH2) in the small LH2 tank increased to roughly 0.67 MPaG/h, and the temperature of the GH2 in the small LH2 tank increased at the position of gaseous hydrogen at roughly 1.0 K/min when the maximum rolling angle was 5°; the average rolling and liquid-oscillation periods were 114 and 118 s, respectively, as detected by the MgB2 level sensors, which therefore detected a long-period LH2 wave due to the ship’s motion.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018
    Description: Galactinol synthases (GolSs) are the key enzymes that participate in raffinose family oligosaccharides (RFO) biosynthesis, which perform a big role in modulating plant growth and response to biotic or abiotic stresses. To date, no systematic study of this gene family has been conducted in cassava (Manihot esculenta Crantz). Here, eight MeGolS genes are isolated from the cassava genome. Based on phylogenetic background, the MeGolSs are clustered into four groups. Through predicting the cis-elements in their promoters, it was discovered that all MeGolS members act as hormone-, stress-, and tissue-specific related elements to different degrees. MeGolS genes exhibit incongruous expression patterns in various tissues, indicating that different MeGolS proteins might have diverse functions. MeGolS1 and MeGolS3–6 are highly expressed in leaves and midveins. MeGolS3–6 are highly expressed in fibrous roots. Quantitative real-time Polymerase Chain Reaction (qRT-PCR) analysis indicates that several MeGolSs, including MeGolS1, 2, 5, 6, and 7, are induced by abiotic stresses. microRNA prediction analysis indicates that several abiotic stress-related miRNAs target the MeGolS genes, such as mes-miR156, 159, and 169, which also respond to abiotic stresses. The current study is the first systematic research of GolS genes in cassava, and the results of this study provide a basis for further exploration the functional mechanism of GolS genes in cassava.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018
    Description: Increasing plant density seems to improve the productivity of maize crops, and the understanding of how the metabolism of non-structural carbohydrates is affected in plants under high crop density is critical. Thus, with the objective of further clarifying this issue, maize plants were subjected to densities from 30,000 to 90,000 plants ha−1, and the plant growth, soluble sugars and starch contents, invertase and sucrose synthase activities, and plant production were evaluated. We found that the stalk is more sensitive to the increasing plant density than leaves and kernels. The dry weight of the stalk and leaves per single plant decreased more drastically from low to intermediate plant densities, while grain production was reduced linearly in all plant density ranges, leading to higher values of harvest index in intermediate plant densities. The sucrose concentration did not change in leaves, stalk, or kernels of plants subjected to increasing plant densities at the R4 stage. Also, the specific activity of soluble invertase, bound invertase, and sucrose synthase did not change in leaf, stalk, or kernels of plants subjected to increased plant density. The productivity was increased with the increase in plant density, using narrow row (0.45 m) spacing.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018
    Description: The implementation of damage-detection methods for continuously assessing structural integrity entails systems with attractive features such as storage capabilities, memory capacity, computational complexity and time-consuming processing. In this sense, embedded hardware platforms are a promising technology for developing integrated solutions in Structural Health Monitoring. In this paper, design, test, and specifications for a standalone inspection prototype are presented, which take advantage of piezo-diagnostics principle, statistical processing via Principal Component Analysis (PCA) and embedded systems. The equipment corresponds to a piezoelectric active system with the capability to detect defects in structures, by using a PCA-based algorithm embedded in the Odroid-U3 ARM Linux platform. The operation of the equipment consists of applying, at one side of the structure, wide guided waves by means of piezoelectric devices operated in actuation mode and to record the wave response in another side of the structure by using the same kind of piezoelectric devices operated in sensor mode. Based on the nominal response of the guide wave (no damages), represented by means of a PCA statistical model, the system can detect damages between the actuated/sensed points through squared prediction error (Q-statistical index). The system performance was evaluated in a pipe test bench where two kinds of damages were studied: first, a mass is added to the pipe surface, and then leaks are provoked to the pipe structure by means of a drill tool. The experiments were conducted on two lab structures: (i) a meter carbon-steel pipe section and (ii) a pipe loop structure. The wave response was recorded between the instrumented points for two conditions: (i) The pipe in nominal conditions, where several repetitions will be applied to build the nominal statistical model and (ii) when damage is caused to the pipe (mass adding or leak). Damage conditions were graphically recognized through the Q-statistic chart. Thus, the feasibility to implement an automated real-time diagnostic system is demonstrated with minimum processing resources and hardware flexibility.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018
    Description: Urban land cover and land use mapping plays an important role in urban planning and management. In this paper, novel multi-scale deep learning models, namely ASPP-Unet and ResASPP-Unet are proposed for urban land cover classification based on very high resolution (VHR) satellite imagery. The proposed ASPP-Unet model consists of a contracting path which extracts the high-level features, and an expansive path, which up-samples the features to create a high-resolution output. The atrous spatial pyramid pooling (ASPP) technique is utilized in the bottom layer in order to incorporate multi-scale deep features into a discriminative feature. The ResASPP-Unet model further improves the architecture by replacing each layer with residual unit. The models were trained and tested based on WorldView-2 (WV2) and WorldView-3 (WV3) imageries over the city of Beijing. Model parameters including layer depth and the number of initial feature maps (IFMs) as well as the input image bands were evaluated in terms of their impact on the model performances. It is shown that the ResASPP-Unet model with 11 layers and 64 IFMs based on 8-band WV2 imagery produced the highest classification accuracy (87.1% for WV2 imagery and 84.0% for WV3 imagery). The ASPP-Unet model with the same parameter setting produced slightly lower accuracy, with overall accuracy of 85.2% for WV2 imagery and 83.2% for WV3 imagery. Overall, the proposed models outperformed the state-of-the-art models, e.g., U-Net, convolutional neural network (CNN) and Support Vector Machine (SVM) model over both WV2 and WV3 images, and yielded robust and efficient urban land cover classification results.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018
    Description: The use of electrochemical sensors for the analysis of biological samples is nowadays widespread and highly demanded from diagnostic and pharmaceutical research, but the reliability and repeatability still remain debated issues. In the expanding field of printed electronics, Aerosol Jet Printing (AJP) appears promising to bring an improvement in resolution, miniaturization, and flexibility. In this paper, the use of AJP is proposed to design and fabricate customized electrochemical sensors in term of geometry, materials and 3D liquid sample confinement, reducing variability in the functionalization process. After an analysis of geometrical, electrical and surface features, the optimal layout has been selected. An electrochemical test has been then performed quantifying Interleukin-8, selected as reference protein, by means of Anodic Stripping Voltammetry. AJP sensors have been compared with standard screen-printed electrodes in terms of current density and relative standard deviation. Results from AJP sensors with Ag-based Anodic Stripping Voltammetry confirmed nanostructures capability to reduce the limit of detection (from 2.1 to 0.3 ng/mL). Furthermore, AJP appeared to bring an improvement in term of relative standard deviation from 50 to 10%, if compared to screen-printed sensors. This is promising to improve reliability and repeatability of measurement techniques integrable in several biotechnological applications.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018
    Description: In this study, we design and verify an intake system using the wake of a pocket-sized quadcopter for the chemical plume tracing (CPT) problem. Solving CPT represents an important technique in the field of engineering because it can be used to perform rescue operations at the time of a disaster and to identify sources of harmful substances. An appropriate intake of air when sensing odors plays an important role in performing CPT. Hence, we used the air flow generated by a quadcopter itself to intake chemical particles into two alcohol sensors. By experimental evaluation, we verified that the quadcopter wake intake method has good directivity and can be used to realize CPT. Concretely, even at various odor source heights, the quadcopter had a three-dimensional CPT success rate of at least 70%. These results imply that, although a further development of three-dimensional CPT is necessary in order to conduct it in unknown and cluttered environments, the intake method proposed in this paper enables a pocket-sized quadcopter to perform three-dimensional CPT.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018
    Description: This paper presents and applies an inductive directional coupling technology based on spread spectrum time domain reflectometry (SSTDR) for non-intrusive power cable fault diagnosis. Different from existing capacitive coupling approaches with large signal attenuation, an inductive coupling approach with a capacitive trapper is proposed to restrict the detection signal from transmitting to power source and to eliminate the effect of the power source impedance mismatch. The development, analysis, and implementation of the proposed approach are discussed in detail. A series of simulations and experiments on cables with different fault modes are conducted, along with comparison of existing capacitive coupling, to verify and demonstrate the effectiveness of the proposed method.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018
    Description: Texas Instruments ADS1299 is an attractive choice for low cost electroencephalography (EEG) devices owing to its low power consumption and low input referred noise. To date, there have been no rigorous evaluations of its performance. In this EEG experimental study we evaluated the performance of the ADS1299 against a high quality laboratory-based system. Two self-paced lower limb motor tasks were performed by 22 healthy participants. Recorded power across delta, theta, alpha, and beta EEG bands, the power ratio across the motor tasks, pre-movement noise, and signal-to-noise ratio were obtained for evaluation. The amplitude and time of the negative peak in the movement-related cortical potentials (MRCPs) extracted from the EEG data were also obtained. Using linear mixed models, no statistically significant differences (p 〉 0.05) were found in any of these measures across the two systems. These findings were further supported by evaluation of cosine similarity, waveform differences, and topographic maps. There were statistically significant differences in MRCPs across the motor tasks in both systems. We conclude that the performance of the ADS1299 in combination with wet Ag/AgCl electrodes is analogous to that of a laboratory-based system in a low frequency (〈40 Hz) EEG recording.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018
    Description: This paper proposes a deep convolutional neural network (CNN) -based technique for the detection of micro defects on metal screw surfaces. The defects we consider include surface damage, surface dirt, and stripped screws. Images of metal screws with different types of defects are collected using industrial cameras, which are then employed to train the designed deep CNN. To enable efficient detection, we first locate screw surfaces in the pictures captured by the cameras, so that the images of screw surfaces can be extracted, which are then input to the CNN-based defect detector. Experiment results show that the proposed technique can achieve a detection accuracy of 98%; the average detection time per picture is 1.2 s. Comparisons with traditional machine vision techniques, e.g., template matching-based techniques, demonstrate the superiority of the proposed deep CNN-based one.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018
    Description: In this paper, a novel parallel factor (PARAFAC) model for processing the nested vector-sensor array is proposed. It is first shown that a nested vector-sensor array can be divided into multiple nested scalar-sensor subarrays. By means of the autocorrelation matrices of the measurements of these subarrays and the cross-correlation matrices among them, it is then demonstrated that these subarrays can be transformed into virtual scalar-sensor uniform linear arrays (ULAs). When the measurement matrices of these scalar-sensor ULAs are combined to form a third-order tensor, a novel PARAFAC model is obtained, which corresponds to a longer vector-sensor ULA and includes all of the measurements of the difference co-array constructed from the original nested vector-sensor array. Analyses show that the proposed PARAFAC model can fully use all of the measurements of the difference co-array, instead of its partial measurements as the reported models do in literature. It implies that all of the measurements of the difference co-array can be fully exploited to do the 2-D direction of arrival (DOA) and polarization parameter estimation effectively by a PARAFAC decomposition method so that both the better estimation performance and slightly improved identifiability are achieved. Simulation results confirm the efficiency of the proposed model.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018
    Description: The Internet of Things (IoT) is increasingly part of daily life. However, the development of IoT applications still faces many problems, such as heterogeneity, complex management, and other difficulties. In this paper, first, the open source technologies of IoT are surveyed. We compare these technologies from the point of view of different levels of technical requirements, such as device management, data management, communication, intelligent data processing, security and privacy protection; we also look at requirements of application development and deployment. Second, an IoT integrated development platform architecture for IoT applications based on open source ecosystem is proposed and evaluated in an industrial setting. We applied P2P technology to distributed resource management and blockchain-based smart contract mechanics for resource billing management. The results show that the IoT gateway based on an open source ecosystem had a stable and reliable system performance with a certain data size and concurrency scale. These conditions satisfy the application requirements of the IoT in most sensing environments.
    Electronic ISSN: 1999-5903
    Topics: Computer Science
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018
    Description: Provision of smart city services often relies on users contribution, e.g., of data, which can be costly for the users in terms of privacy. Privacy risks, as well as unfair distribution of benefits to the users, should be minimized as they undermine user participation, which is crucial for the success of smart city applications. This paper investigates privacy, fairness, and social welfare in smart city applications by means of computer simulations grounded on real-world data, i.e., smart meter readings and participatory sensing. We generalize the use of public good theory as a model for resource management in smart city applications, by proposing a design principle that is applicable across application scenarios, where provision of a service depends on user contributions. We verify its applicability by showing its implementation in two scenarios: smart grid and traffic congestion information system. Following this design principle, we evaluate different classes of algorithms for resource management, with respect to human-centered measures, i.e., privacy, fairness and social welfare, and identify algorithm-specific trade-offs that are scenario independent. These results could be of interest to smart city application designers to choose a suitable algorithm given a scenario-specific set of requirements, and to users to choose a service based on an algorithm that matches their privacy preferences.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018
    Description: This paper presents a stereo camera-based head-eye calibration method that aims to find the globally optimal transformation between a robot’s head and its eye. This method is highly intuitive and simple, so it can be used in a vision system for humanoid robots without any complex procedures. To achieve this, we introduce an extended minimum variance approach for head-eye calibration using surface normal vectors instead of 3D point sets. The presented method considers both positional and orientational error variances between visual measurements and kinematic data in head-eye calibration. Experiments using both synthetic and real data show the accuracy and efficiency of the proposed method.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018
    Description: The motivation of this work is to help outpatients find their corresponding departments or clinics, thus, it needs to provide indoor positioning services with a room-level accuracy. Unlike wireless outdoor localization that is dominated by the global positioning system (GPS), wireless indoor localization is still an open issue. Many different schemes are being developed to meet the increasing demand for indoor localization services. In this paper, we investigated the AoA-based wireless indoor localization for outpatients’ wayfinding in a hospital, where Wi-Fi access points (APs) are deployed, in line, on the ceiling. The target position can be determined by a mobile device, like a smartphone, through an efficient geometric calculation with two known APs coordinates and the angles of the incident radios. All possible positions in which the target may appear have been comprehensively investigated, and the corresponding solutions were proven to be the same. Experimental results show that localization error was less than 2.5 m, about 80% of the time, which can satisfy the outpatients’ requirements for wayfinding.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018
    Description: The working–sleeping cycle strategy used for sensor nodes with limited power supply in wireless sensor networks can effectively save their energy, but also causes opportunistic node connections due to the intermittent communication mode, which can affect the reliability of data transmission. To address this problem, a data collection scheme based on opportunistic node connections is proposed to achieve efficient data collection in a network with a mobile sink. In this scheme, the mobile sink first broadcasts a tag message to start a data collection period, and all nodes that receive this message will use the probe message to forward their own source information to the mobile sink. On receiving these probe messages, the mobile sink then constructs an opportunistic connection random graph by analyzing the source information included in them, and calculates the optimal path from itself to each node in this random graph, therefore a spanning tree could be generated with the mobile sink play as the root node, finally, it broadcasts this spanning tree so that each node could obtain an optimal path from itself to the mobile sink to forward the sensing data. In addition, a routing protocol that adapts to different nodes operating statuses is proposed to improve the reliability of data transmission. Simulation results show that the proposed scheme works better concerning the packet delivery rate, energy consumption and network lifetime.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018
    Description: Depth discrimination is a key procedure in acoustic detection or target classification for low-frequency underwater sources. Conventional depth-discrimination methods use a vertical line array, which has disadvantage of poor mobility due to the size of the sensor array. In this paper, we propose a depth-discrimination method for low-frequency sources using a horizontal line array (HLA) of acoustic vector sensors based on mode extraction. First, we establish linear equations related to the modal amplitudes based on modal beamforming in the vector mode space. Second, we solve the linear equations by introducing the total least square algorithm and estimate modal amplitudes. Third, we select the power percentage of the low-order modes as the decision metric and construct testing hypotheses based on the modal amplitude estimation. Compared with a scalar sensor, a vector sensor improves the depth discrimination, because the mode weights are more appropriate for doing so. The presented linear equations and the solution algorithm allow the method to maintain good performance even using a relatively short HLA. The constructed testing hypotheses are highly robust against mismatched environments. Note that the method is not appropriate for the winter typical sound speed waveguide, because the characteristics of the modes differ from those in downward-refracting sound speed waveguide. Robustness analysis and simulation results validate the effectiveness of the proposed method.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018
    Description: Mobile Crowdsensing (MCS) is a paradigm for collecting large-scale sensor data by leveraging mobile devices equipped with small and low-powered sensors. MCS has recently received considerable attention from diverse fields, because it can reduce the cost incurred in the process of collecting a large amount of sensor data. However, in the task assignment process in MCS, to allocate the requested tasks efficiently, the workers need to send their specific location to the requester, which can raise serious location privacy issues. In this paper, we focus on the methods for publishing differentially a private spatial histogram to guarantee the location privacy of the workers. The private spatial histogram is a sanitized spatial index where each node represents the sub-regions and contains the noisy counts of the objects in each sub-region. With the sanitized spatial histograms, it is possible to estimate approximately the number of workers in the arbitrary area, while preserving their location privacy. However, the existing methods have given little concern to the domain size of the input dataset, leading to the low estimation accuracy. This paper proposes a partitioning technique SAGA (Skew-Aware Grid pArtitioning) based on the hotspots, which is more appropriate to adjust the domain size of the dataset. Further, to optimize the overall errors, we lay a uniform grid in each hotspot. Experimental results on four real-world datasets show that our method provides an enhanced query accuracy compared to the existing methods.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018
    Description: Monocropping systems, which currently dominate China’s major grain production regions, contribute to resource scarcity and environmental pollution. Intercropping has the potential to improve resource use efficiency. However, prior studies of intercropping systems have generally focused on ecological, economic, and social consequences. Here, we make a comparative ecological sustainability analysis on energy capture and efficiency of maize monocropping and maize–soybean intercropping systems through emergy evaluation based on field experiments performed from 2012 to 2014. We find that maize monocropping shows higher sustainability than maize–soybean intercropping in the North China Plain at present. Quantitative results indicate that for maize monocropping, the emergy yield ratio (EYR) and emergy sustainability index (ESI) are 13.7% and 21.1% higher than that of intercropping systems, and the environmental loading ratio (ELR) is 7.3% lower than that of intercropping systems. To further test, we applied three levels of nitrogen fertilizer in intercropping systems (120 kg ha−1, 180 kg ha−1, 240 kg ha−1), and find that a reduced rate of N fertilizer for intercropped system leads to higher sustainability (ESI 5.3% higher) but still lower sustainability than maize monocropping. Key drivers of the different sustainability outcomes are decreased energy output and a larger proportion of labor input associated with intercropping systems.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018
    Description: A cross-capacitance liquid level sensor is based on the principle of cross capacitance. This study designed a new single-tube cross-capacitance fuel-level sensor. The fuel-level measurement model is established for a single-tube cross-capacitive sensor, and the relationship between the measured liquid level and sensor output capacitance is derived. The characteristics of the sensor were tested experimentally. The experimental results demonstrate that the linearity error of the liquid-level sensor of the single-tube calculation for the spacecraft is ±0.48%, the repeatability error is ±0.47%, and the hysteresis error is ±0.68%. The cross-capacitive fuel-level sensor developed in this study can be used in the fuel tank of spacecrafts owing to its low weight and high precision.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018
    Description: In the present study, the following was investigated: (a) The effect of ulvan on in vivo and in vitro biocontrol of Debaryomyces hansenii and Stenotrophomonas rhizophila against Fusarium proliferaum and (b) the effect of ulvan on in vivo and in vitro growth of D. hansenii and S. rhizophila and muskmelon quality parameters. The results showed that the biocontrol activity of D. hansenii and S. rhizophila could be enhanced by ulvan (5 g/L). The combination of ulvan and S. rhizophila resulted in a more effective control of fruit rot in comparison to fungicide benomyl. On in vitro growth of F. proliferatum, individual treatments of D. hansenii and S. rhizophila inhibited spore germination and mycelial growth with no statistical difference with the combined treatments. Ulvan does not have a direct effect on the in vivo and in vitro growth of D. hansenii and S. rhizophila. Furthermore, the combined treatments improve the natural disease incidence and quality parameters like weight, firmness, total soluble solids (TSS), and pH. These results suggest that the use of ulvan may be an effective method to improve the biological activity of D. hansenii and S. rhizophila.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018
    Description: Ontology matching is an essential problem in the world of Semantic Web and other distributed, open world applications. Heterogeneity occurs as a result of diversity in tools, knowledge, habits, language, interests and usually the level of detail. Automated applications have been developed, implementing diverse aligning techniques and similarity measures, with outstanding performance. However, there are use cases where automated linking fails and there must be involvement of the human factor in order to create, or not create, a link. In this paper we present Alignment, a collaborative, system aided, interactive ontology matching platform. Alignment offers a user-friendly environment for matching two ontologies with the aid of configurable similarity algorithms.
    Electronic ISSN: 2078-2489
    Topics: Computer Science
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018
    Description: The objective of this research was to evaluate the production and phytochemical quality of cucumber (Cucumis sativus) fruits, in response to the foliar application of different seaweed extracts. This study was carried out under shadow mesh conditions in the autumn–winter agricultural cycle at the Instituto Tecnológico de Torreón, Torreón, Coahuila, Mexico. The experimental design was completely random, using six treatments with six repetitions each. The treatments evaluated were: Macrocystis pyrifera, Bryothamnion triquetrum, Ascophyllum nodosum, Grammatophora spp., Macrocystis integrifolia, and a control treatment with inorganic fertilization. The substrate used was a mixture of sand and vermicompost. The yield, commercial size, and phytochemical compounds of the fruit were evaluated. Results showed that the yield using Steiner solution (6.75 kg m−2) was higher than that obtained with Bryothamnion triquetrum algae (6.07 kg m−2). Regarding the phenolic content, the extracts surpassed the control treatment, with Macrocystis pyrifera and Macrocystis integrifolia being statistically equal, with values of 47.37 and 43.73 mg equiv. of Ac. Gallic 100 g fresh weight, respectively. The antioxidant capacity by ABTS+ and DPPH+ methods was higher using the treatment with Macrocystis pyrifera algae with 149.4 and 454.1 μM equiv Trolox/100 g fresh base, respectively. This treatment also presented the highest value of vitamin C with 5.07 mg/100 g fresh base, being 27% greater than the control treatment. Algae extracts increased the quality of the fruits by obtaining the highest antioxidant capacity, making their use a viable option to minimize the application of conventional fertilizers, thereby attenuating the effects on the environment and improving the health of the population.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018
    Description: With the development in the exploitation of maritime resources, the structural health monitoring (SHM) of offshore structures becomes necessary. This study focuses on addressing the practical issues of application of fiber Bragg grating (FBG) sensors for the SHM of offshore structures, in particular an FPSO (floating, production, storage, and offloading unit) vessel. Due to the harsh marine environment and tough working conditions, the FBG sensors must have sufficient protection and good repeatability for long-term monitoring. Thorough research has been conducted to identify the most suitable, commercially available protection packaging for FBG sensors for offshore applications. Further, the performance of the selected FBG sensor packaging is tested under conditions of strong sunlight, heavy rain, and salty water in order to emulate the marine environment. Moreover, the installation method of the packaged FBG sensors is equally important, as it ensures the repeatability and durability of the sensors for their long-term performance. It is shown that the packaged FBG sensors can be installed using resin-based epoxy to maintain the repeatability of the sensor over the long-term. Further, the packaged FBG sensors are installed and tested on a simple FPSO model. The experimental results under full load and ballast draft conditions show that the proposed FBG sensors are competent for the SHM of offshore structures.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018
    Description: Highly accurate and easy-to-operate calibration (to determine the interior and distortion parameters) and orientation (to determine the exterior parameters) methods for cameras in large volume is a very important topic for expanding the application scope of 3D vision and photogrammetry techniques. This paper proposes a method for simultaneously calibrating, orienting and assessing multi-camera 3D measurement systems in large measurement volume scenarios. The primary idea is building 3D point and length arrays by moving a scale bar in the measurement volume and then conducting a self-calibrating bundle adjustment that involves all the image points and lengths of both cameras. Relative exterior parameters between the camera pair are estimated by the five point relative orientation method. The interior, distortion parameters of each camera and the relative exterior parameters are optimized through bundle adjustment of the network geometry that is strengthened through applying the distance constraints. This method provides both internal precision and external accuracy assessment of the calibration performance. Simulations and real data experiments are designed and conducted to validate the effectivity of the method and analyze its performance under different network geometries. The RMSE of length measurement is less than 0.25 mm and the relative precision is higher than 1/25,000 for a two camera system calibrated by the proposed method in a volume of 12 m × 8 m × 4 m. Compared with the state-of-the-art point array self-calibrating bundle adjustment method, the proposed method is easier to operate and can significantly reduce systematic errors caused by wrong scaling.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018
    Description: We evaluate the spectral resolution and the detection thresholds achievable for a photoacoustic spectroscopy (PAS) system in the broadband infrared wavelength region 3270 n m ≲ λ ≲ 3530 n m driven by a continuous wave optical parametric oscillator (OPO) with P ¯ ≈ 1.26 W . The absorption spectra, I PAS ( λ i ) , for diluted propane, ethane and methane test gases at low concentrations ( c ∼ 100 ppm ) were measured for ∼1350 discrete wavelengths λ i . The I PAS ( λ i ) spectra were then compared to the high resolution cross section data, σ FTIR , obtained by Fourier Transform Infrared Spectroscopy published in the HITRAN database. Deviations of 7.1(6)% for propane, 8.7(11)% for ethane and 15.0(14)% for methane with regard to the average uncertainty between I PAS ( λ i ) and the expected reference values based on σ FTIR were recorded. The characteristic absorption wavelengths λ res can be resolved with an average resolution of δ λ res ∼ 0.08 nm . Detection limits range between 7.1 ppb (ethane) to 13.6 ppb (methane). In an additional step, EUREQA, an artificial intelligence (AI) program, was successfully applied to deconvolute simulated PAS spectra of mixed gas samples at low limits of detection. The results justify a further development of PAS technology to support e.g., biomedical research.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018
    Description: The massive dissemination of smart devices in current markets provides innovative technologies that can be used in energy management systems. Particularly, smart plugs enable efficient remote monitoring and control capabilities of electrical resources at a low cost. However, smart plugs, besides their enabling capabilities, are not able to acquire and communicate information regarding the resource’s context. This paper proposes the EnAPlug, a new environmental awareness smart plug with knowledge capabilities concerning the context of where and how users utilize a controllable resource. This paper will focus on the abilities to learn and to share knowledge between different EnAPlugs. The EnAPlug is tested in two different case studies where user habits and consumption profiles are learned. A case study for distributed resource optimization is also shown, where a central heater is optimized according to the shared knowledge of five EnAPlugs.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018
    Description: Recognition of human actions form videos has been an active area of research because it has applications in various domains. The results of work in this field are used in video surveillance, automatic video labeling and human-computer interaction, among others. Any advancements in this field are tied to advances in the interrelated fields of object recognition, spatio- temporal video analysis and semantic segmentation. Activity recognition is a challenging task since it faces many problems such as occlusion, view point variation, background differences and clutter and illumination variations. Scientific achievements in the field have been numerous and rapid as the applications are far reaching. In this survey, we cover the growth of the field from the earliest solutions, where handcrafted features were used, to later deep learning approaches that use millions of images and videos to learn features automatically. By this discussion, we intend to highlight the major breakthroughs and the directions the future research might take while benefiting from the state-of-the-art methods.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018
    Description: The performance of a quality of service (QoS) control scheme in a multi-hop wireless body area network (WBAN) based on the IEEE Std. 802.15.6 is evaluated. In medical Internet of Things systems, WBANs are an important technology. In a previous study, an optimal quality of service control scheme that employs a multiplexing layer for priority scheduling and a decomposable error control coding scheme for WBANs were proposed. However, the two-hop extension supported by IEEE Std.802.15.6 has not been considered. Here, the two-hop extension is applied. Then, the packet error ratio, number of transmissions, and energy efficiency of our previously proposed system are compared to a standard scheme under several conditions. Also, novel evaluations based on communication distance are conducted. Numerical results demonstrate that our proposed scheme, in which coding rates change relative to channel conditions, outperforms standard schemes in many aspects. In addition, those systems show the best performance when the communication distance of the first hop equals that of the second hop. In addition, the above result is theoretically clarified.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018
    Description: As is well known, multi-hop range-free localization algorithms demonstrate pretty good performance in isotropic networks in which sensor nodes distribute evenly and densely. However, these algorithms are easily affected by network topology, causing a significant decrease in positioning accuracy. To improve the localization performance in anisotropic networks, this paper presents a multi-hop range-free localization algorithm based on Least Square Regularized Regression (LSRR). By building a mapping relationship between hop counts and real distances, we can regard the process of localization as a regularized regression. Firstly, the proximity information of the given network is measured. Then, a mapping model between the geographical distances and the hop distances is constructed by LSRR. Finally, each sensor node finds its own position via this mapping. The Average Localization Error (ALE) metric is used to evaluate the proposed method in our experiments, and results show that, compared with similar methods, our approach can effectively decrease the effect of anisotropy, thus considerably improving the positioning accuracy.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018
    Description: Geographic information systems (GIS) provide accurate maps of terrain, roads, waterways, and building footprints and heights. Aircraft, particularly small unmanned aircraft systems (UAS), can exploit this and additional information such as building roof structure to improve navigation accuracy and safely perform contingency landings particularly in urban regions. However, building roof structure is not fully provided in maps. This paper proposes a method to automatically label building roof shape from publicly available GIS data. Satellite imagery and airborne LiDAR data are processed and manually labeled to create a diverse annotated roof image dataset for small to large urban cities. Multiple convolutional neural network (CNN) architectures are trained and tested, with the best performing networks providing a condensed feature set for support vector machine and decision tree classifiers. Satellite image and LiDAR data fusion is shown to provide greater classification accuracy than using either data type alone. Model confidence thresholds are adjusted leading to significant increases in models precision. Networks trained from roof data in Witten, Germany and Manhattan (New York City) are evaluated on independent data from these cities and Ann Arbor, Michigan.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018
    Description: Inertial navigation systems (INSs) use the temperature control system to ensure the stability of the temperature of the inertial sensors for improving the navigation accuracy of the INSs. That is, the temperature control accuracy affects the performance of the INSs. Thus, the performance of temperature control systems must be evaluated before their application. However, nearly all high-precision INSs are large and heavy and require long-term testing under many different experimental conditions. As a result, conducting an outdoor navigation experiment, which involves high–low temperature and heading rotation tests, is time consuming, laborious, and costly for researchers. To address this issue, an economical high–low temperature and heading rotation test method for high-precision platform INSs is proposed, and an evaluation system based on this method is developed to evaluate the performance of the temperature control systems for high-precision platform INSs indoors. The evaluation system uses an acrylic chamber, exhaust fans, temperature sensors, and an air conditioner to simulate the environment temperature change. The outer gimbals of the platform INSs are utilized to simulate the heading rotation. The temperature control system of a high-precision platform INS is evaluated using the proposed evaluation method. The temperature difference of the gyros is obtained in the high–low temperature test, and the temperature fluctuation of the temperature control system is observed in the rotation test. These tests verify the effectiveness of the proposed evaluation method. Then, the corresponding optimization method for the temperature control system of this high-precision platform INS is put forward on the basis of the test results of the evaluation system. Experimental results show that the maximum temperature differences of the two gyros between high- and low-temperature tests are decreased from 1.51 °C to 0.50 °C, and the maximum temperature fluctuation value of the temperature control system is decreased from 0.81 °C to 0.27 °C after the proposed evaluation and optimization processes. Therefore, the proposed methods are cost effective and useful for evaluating and optimization of the temperature control system for INSs.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018
    Description: With the new advancements in flight control and integrated circuit (IC) technology, unmanned aerial vehicles (UAVs) have been widely used in various applications. One of the typical application scenarios is data collection for large-scale and remote sensor devices in the Internet of things (IoT). However, due to the characteristics of massive connections, access collisions in the MAC layer lead to high power consumption for both sensor devices and UAVs, and low efficiency for the data collection. In this paper, a dynamic speed control algorithm for UAVs (DSC-UAV) is proposed to maximize the data collection efficiency, while alleviating the access congestion for the UAV-based base stations. With a cellular network considered for support of the communication between sensor devices and drones, the connection establishment process was analyzed and modeled in detail. In addition, the data collection efficiency is also defined and derived. Based on the analytical models, optimal speed under different sensor device densities is obtained and verified. UAVs can dynamically adjust the speed according to the sensor device density under their coverages to keep high data collection efficiency. Finally, simulation results are also conducted to verify the accuracy of the proposed analytical models and show that the DSC-UAV outperforms others with the highest data collection efficiency, while maintaining a high successful access probability, low average access delay, low block probability, and low collision probability.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018
    Description: A major contributor to longitudinal vibration in marine propulsion systems is propeller induced excitation. This constitutes a key source of underwater acoustical radiation through excitation of the hull. Understanding this hydrodynamic force at the interface of the thrust bearing is important in order to develop an accurate vibrational model of the propulsion system and in determining potential control mechanisms. In order to investigate the thrust force during operation of a propulsion system, Polyvinylidene Fluoride (PVDF) was embedded into the stationery collar inside a custom thrust bearing in a scaled model of a typical propulsion system. The number of blades of the propeller and its rotational speed were altered to obtain an understanding of the characteristic vibrations of the shaft propulsion system. The rig comprised of the propeller, shaft, journal bearings and a thrust bearing. A two and three blade propeller and a four, five and six pad bearing were tested. A strain gauge and accelerometer were used to infer the propeller force and enable comparison with the PVDF signals. As a result of the asymmetrical flow around the propeller, the blade passing frequencies (BPF) are clearly observed. This frequency contribution was present at all speeds tested. The PVDF signal also showed significant pad passing frequency (PPF) and BPF and modulation of both.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018
    Description: The fraction of absorbed photosynthetically active radiation (FPAR) is a key variable in the model of vegetation productivity. Vegetation indices (VIs) that were derived from instantaneous remote-sensing data have been successfully used to estimate the FPAR of a day or a longer period. However, it has not yet been verified whether continuous VIs can be used to accurately estimate the diurnal dynamics of a vegetation canopy FPAR, which may fluctuate dramatically within a day. In this study, we measured the high temporal resolution spectral data (480 to 850 nm) and FPAR data of a maize canopy from the jointing stage to the tasseling stage under different irrigation and illumination conditions using two automatic observation systems. To estimate the FPAR, we developed regression models based on a quadratic function using 13 kinds of VIs. The results show the following: (1) Under nondrought conditions, although the illumination condition (sunny or cloudy) influenced the trend of the canopy diurnal FPAR, it had only a slight effect on the model accuracies of the FPAR-VIs. The maximum coefficients of determination (R2) of the FPAR-VIs models generated for the sunny nondrought data, the cloudy nondrought data, and all of the nondrought data were 0.895, 0.88, and 0.828, respectively. The VIs—including normalized difference vegetation index (NDVI), green NDVI (GNDVI), red-edge simple ratio (SR705), modified simple ratio 2 (mSR2), red-edge normalized difference vegetation index (NDVI705), and enhanced vegetation index (EVI)—that were related to the canopy structure had higher estimation accuracies (R2 〉 0.8) than the other VIs that were related to the soil adjustment, chlorophyll, and physiology. The estimation accuracies of the GNDVI and some red-edge VIs (including NDVI705, SR705, and mSR2) were higher than the estimation accuracy of the NDVI. (2) Under drought stress, the FPAR decreased significantly because of leaf wilting and the effective leaf area index decrease around noon. When we included drought data in the model, accuracies were reduced dramatically and the R2 value of the best model was only 0.59. When we built the regression models based only on drought data, the EVI, which can weaken the influence of soil, had the best estimate accuracy (R2 = 0.68).
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018
    Description: Ultrasonic guided wave (UGW) is one of the most commonly used technologies for non-destructive evaluation (NDE) and structural health monitoring (SHM) of structural components. Because of its excellent long-range diagnostic capability, this method is effective in detecting cracks, material loss, and fatigue-based defects in isotropic and anisotropic structures. The shape and orientation of structural defects are critical parameters during the investigation of crack propagation, assessment of damage severity, and prediction of remaining useful life (RUL) of structures. These parameters become even more important in cases where the crack intensity is associated with the safety of men, environment, and material, such as ship’s hull, aero-structures, rail tracks and subsea pipelines. This paper reviews the research literature on UGWs and their application in defect diagnosis and health monitoring of metallic structures. It has been observed that no significant research work has been convened to identify the shape and orientation of defects in plate-like structures. We also propose an experimental research work assisted by numerical simulations to investigate the response of UGWs upon interaction with cracks in different shapes and orientations. A framework for an empirical model may be considered to determine these structural flaws.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018
    Description: In recent years, the laboratory security of universities has become an important issue for students and devices. To solve this security issue, this paper proposes an intelligent monitoring system to realize environment detection in university laboratories. The main purpose of this system is to monitor the laboratory environment data in time and improve the laboratory inspection efficiency. The system consists of a single chip microcomputer, which is the core of this system, a sensor function module and GPRS wireless communication, realizing data monitoring and short message warning. Therefore, three features, front-end data acquisition, data wireless transmission and a security alarm, are achieved by the proposed system. The real experiments show that front-end data acquisition is effective, data transmission is reliable, and the alarm message is received in time. Furthermore, the system, with the modified function modules, can be used in other scenarios to detect environments, and thus has a significant applied value in other areas.
    Electronic ISSN: 1999-5903
    Topics: Computer Science
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018
    Description: A NiFe alloy nanoparticle/graphene oxide hybrid (NiFe/GO) was prepared for electrochemical glucose sensing. The as-prepared NiFe/GO hybrid was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that NiFe alloy nanoparticles can be successfully deposited on GO. The electrochemical glucose sensing performance of the as-prepared NiFe/GO hybrid was studied by cyclic voltammetry and amperometric measurement. Results showed that the NiFe/GO-modified glassy carbon electrode had sensitivity of 173 μA mM−1 cm−2 for glucose sensing with a linear range up to 5 mM, which is superior to that of commonly used Ni nanoparticles. Furthermore, high selectivity for glucose detection could be achieved by the NiFe/GO hybrid. All the results demonstrated that the NiFe/GO hybrid has promise for application in electrochemical glucose sensing.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018
    Description: Because of multiple manufacturing phases or operating conditions, a great many industrial processes work with multiple modes. In addition, it is inevitable that some measurements of industrial variables obtained through hardware sensors are incorrectly observed, recorded or imported into databases, resulting in the dataset available for statistic analysis being contaminated by outliers. Unfortunately, these outliers are difficult to recognize and remove completely. These process characteristics and dataset imperfections impose challenges on developing high-accuracy soft sensors. To resolve this problem, the Student’s-t mixture regression (SMR) is proposed to develop a robust soft sensor for multimode industrial processes. In the SMR, for each mixing component, the Student’s-t distribution is used instead of the Gaussian distribution to model secondary variables, and the functional relationship between secondary and primary variables is explicitly considered. Based on the model structure of the SMR, a computationally efficient parameter-learning algorithm is also developed for SMR. Results conducted on two cases including a numerical example and a real-life industrial process demonstrate the effectiveness and feasibility of the proposed approach.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018
    Description: Crowd counting is of significant importance for numerous applications, e.g., urban security, intelligent surveillance and crowd management. Existing crowd counting methods typically require specialized hardware deployment and strict operating conditions, thereby hindering their widespread application. To acquire a more effective crowd counting approach, a device-free counting method based on Channel Status Information (CSI) is proposed. The wavelet domain denoising is introduced to mitigate environment noise. Furthermore, the amplitude or phase covariance matrix is extracted as the eigenmatrix. Moreover, both the spatial diversity and frequency diversity are leveraged to improve detection robustness. At the same experimental environment, the accuracy of the proposed CSI-based method is compared with a renowned crowd counting one, i.e., Electronic Frog Eye: Counting Crowd Using WiFi (FCC). The experimental results reveal an accuracy improvement of 30% over FCC.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018
    Description: Mobile crowdsensing (MCS) is a promising sensing paradigm that leverages diverse embedded sensors in massive mobile devices. One of its main challenges is to effectively select participants to perform multiple sensing tasks, so that sufficient and reliable data is collected to implement various MCS services. Participant selection should consider the limited budget, the different tasks locations, and deadlines. This selection becomes even more challenging when the MCS tries to efficiently accomplish tasks under different heat regions and collect high-credibility data. In this paper, we propose a user characteristics aware participant selection (UCPS) mechanism to improve the credibility of task data in the sparse user region acquired by the platform and to reduce the task failure rate. First, we estimate the regional heat according to the number of active users, average residence time of users and history of regional sensing tasks, and then we divide urban space into high-heat and low-heat regions. Second, the user state information and sensing task records are combined to calculate the willingness, reputation and activity of users. Finally, the above four factors are comprehensively considered to reasonably select the task participants for different heat regions. We also propose task queuing strategies and community assistance strategies to ensure task allocation rates and task completion rates. The evaluation results show that our mechanism can significantly improve the overall data quality and complete sensing tasks of low-heat regions in a timely and reliable manner.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018
    Description: The ever-growing Internet of Things (IoT) data traffic is one of the primary research focuses of future mobile networks. 3rd Generation Partnership Project (3GPP) standards like Long Term Evolution-Advanced (LTE-A) have been designed for broadband services. However, IoT devices are mainly based on narrowband applications. Standards like LTE-A might not provide efficient spectrum utilization when serving IoT applications. The aggregation of IoT data at an intermediate node before transmission can answer the issues of spectral efficiency. The objective of this work is to utilize the low cost 3GPP fixed, inband, layer-3 Relay Node (RN) for integrating IoT traffic into 5G network by multiplexing data packets at the RN before transmission to the Base Station (BS) in the form of large multiplexed packets. Frequency resource blocks can be shared among several devices with this method. An analytical model for this scheme, developed as an r-stage Coxian process, determines the radio resource utilization and system gain achieved. The model is validated by comparing the obtained results with simulation results.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018
    Description: This paper examines the influence of a short-term thermal treatment of aerosol deposited negative temperature coefficient (NTC) thermistor films on the NTCR characteristics and their long-term stability with different electrode materials. An aerosol deposition of a spinel-based NiMn2O4 powder on alumina substrates with screen-printed AgPd and Au interdigital electrode structures was performed. The manufactured components of the typical size of 1206 were tempered in a moderate temperature range of 200 °C to 800 °C and aged for 1000 h at 125 °C in air. Based on R-T measurements in a high-precision silicone oil thermostat bath and high temperature XRD analyses, the influence of the thermal treatment was analyzed and discussed. A 60-min tempering at 400 °C proved to be optimal, as both the NTCR parameters and their ageing stability could be significantly improved. The findings are explained.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018
    Description: Enabled by piezoceramic transducers, ultrasonic logging images often suffer from low contrast and indistinct local details, which makes it difficult to analyze and interpret geologic features in the images. In this work, we propose a novel partially overlapped sub-block histogram-equalization (POSHE)-based optimum clip-limit contrast enhancement (POSHEOC) method to highlight the local details hidden in ultrasonic well logging images obtained through piezoceramic transducers. The proposed algorithm introduces the idea of contrast-limited enhancement to modify the cumulative distribution functions of the POSHE and build a new quality evaluation index considering the effects of the mean gradient and mean structural similarity. The new index is designed to obtain the optimal clip-limit value for histogram equalization of the sub-block. It makes the choice of the optimal clip-limit automatically according to the input image. Experimental results based on visual perceptual evaluation and quantitative measures demonstrate that the proposed method yields better quality in terms of enhancing the contrast, emphasizing the local details while preserving the brightness and restricting the excessive enhancement compared with the other seven histogram equalization-based techniques from the literature. This study provides a feasible and effective method to enhance ultrasonic logging images obtained through piezoceramic transducers and is significant for the interpretation of actual ultrasonic logging data.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018
    Description: A simple approach was proposed to decrease the detection limit of sandwich lateral flow immunoassay (LFIA) by changing the conditions for binding between a polyvalent antigen and a conjugate of gold nanoparticles (GNPs) with antibodies. In this study, the potato virus Y (PVY) was used as the polyvalent antigen, which affects economically important plants in the Solanaceae family. The obtained polyclonal antibodies that are specific to PVY were characterized using a sandwich enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR). For LFIA, the antibodies were conjugated with GNPs with a diameter of 17.4 ± 1.0 nm. We conducted LFIAs using GNP conjugates in a dried state on the test strip and after pre-incubation with a sample. Pre-incubating the GNP conjugates and sample for 30 s was found to decrease the detection limit by 60-fold from 330 ng∙mL−1 to 5.4 ng∙mL−1 in comparison with conventional LFIA. The developed method was successfully tested for its ability to detect PVY in infected and uninfected potato leaves. The quantitative results of the proposed LFIA with pre-incubation were confirmed by ELISA, and resulted in a correlation coefficient of 0.891. The proposed approach is rapid, simple, and preserves the main advantages of LFIA as a non-laboratory diagnostic method.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018
    Description: Various heterogeneous devices or objects will be integrated for transparent and seamless communication under the umbrella of Internet of things (IoT). This would facilitate the open access of data for the growth of various digital services. Building a general framework of IoT is a complex task because of the heterogeneity in devices, technologies, platforms and services operating in the same system. In this paper, we mainly focus on the framework for Big Data analytics in Smart City applications, which being a broad category specifies the different domains for each application. IoT is intended to support the vision of Smart City, where advance technologies will be used for communication to improve the quality of life of citizens. A novel approach is proposed in this paper to enhance energy conservation and reduce the delay in Big Data gathering at tiny sensor nodes used in IoT framework. To implement the Smart City scenario in terms of Big Data in IoT, an efficient (optimized in quality of service) wireless sensor network (WSN) is required where communication of nodes is energy efficient. Thus, a new protocol, QoS-IoT(quality of service enabled IoT), is proposed on the top layer of the proposed architecture (the five-layer architecture consists of technology, data source, data management, application and utility programs) which is validated over the traditional protocols.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018
    Description: The informal constraints that arise from the national culture in which a firm resides have a pervasive impact on managerial decision making and corporate credit risk, which in turn impacts on corporate ratings and rating changes. In some cultures, firms are naturally predisposed to rating changes in a particular direction (downgrade or upgrade) while, in other cultures, firms are more likely to migrate from the current rating in either direction. This study employs a survival analysis framework to examine the effect of national culture on the probability of rating transitions of 5360 firms across 50 countries over the period 1985–2010. Firms located in long-term oriented cultures are less likely to be downgraded and, in some cases, more likely to be upgraded. Downgrades occur more often in strong uncertainty-avoiding countries and less often in large power distance (hierarchy) and embeddedness countries. There is some evidence that masculinity predisposes firms to more rating transitions. Studying culture helps enrich our understanding of corporate rating migrations, and helps develop predictive models of corporate rating changes across countries.
    Electronic ISSN: 2227-9091
    Topics: Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018
    Description: Agricultural productivity depends on increasingly extreme weather phenomena, and the use of germplasm that has to be continuously improved by plant breeders to become tolerant to various biotic and abiotic stresses. Molecular plant biologists try to understand the mechanisms associated with stress responses and provide knowledge that could be used in breeding programs. To provide a partial overview about our current understanding about molecular and physiological stress responses, and how this knowledge can be used in agriculture, we have edited a special issue on “Biotic and Abiotic Stress Responses in Crop Plants”. Contributions are from different fields including heat stress responses, stress responses during drought and salinity, as well as during flooding, and resistance and susceptibility to pathogenetic stresses and about the role of plant functional metabolites in biotic stress responses. Future research demand in particular areas of crop stress physiology is discussed, as well as the importance of translational research and investigations directly in elite crop plants and in the genetic resources available for breeding.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018
    Description: Work-related musculoskeletal disorders (MSDs) accounted for 32% of days-away-from-work cases in private industry in 2016. Several factors have been associated with MSDs, such as repetitive motion, excessive force, awkward and/or sustained postures, and prolonged sitting and standing, all of which are required in farm workers’ labor. While numerous epidemiological studies on the prevention of MSDs in agriculture have been conducted, an ergonomics evaluation of blueberry harvesting has not yet been systematically performed. The purpose of this study was to investigate the risk factors of MSDs for several types of blueberry harvesting (hand harvesting, semi-mechanical harvesting with hand-held shakers, and over-the-row machines) in terms of workers’ postural loads and self-reported discomfort using ergonomics intervention techniques. Five field studies in the western region of the United States between 2017 and 2018 were conducted using the Borg CR10 scale, electromyography (EMG), Rapid Upper Limb Assessment (RULA), the Cumulative Trauma Disorders (CTD) index, and the NIOSH (National Institute for Occupational Safety and Health) lifting equation. In evaluating the workloads of picking and moving blueberries by hand, semi-mechanical harvesting with hand-held shakers, and completely mechanized harvesting, only EMG and the NIOSH lifting equation were used, as labor for this system is limited to loading empty lugs and unloading full lugs. Based on the results, we conclude that working on the fully mechanized harvester would be the best approach to minimizing worker loading and fatigue. This is because the total component ratio of postures in hand harvesting with a RULA score equal to or greater than 5 was 69%, indicating that more than half of the postures were high risk for shoulder pain. For the semi-mechanical harvesting, the biggest problem with the shakers is the vibration, which can cause fatigue and various risks to workers, especially in the upper limbs. However, it would be challenging for small- and medium-sized blueberry farms to purchase automated harvesters due to their high cost. Thus, collaborative efforts among health and safety professionals, engineers, social scientists, and ergonomists are needed to provide effective ergonomic interventions.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018
    Description: The AGL15 subfamily MADS-box proteins play vital roles in various developmental processes, such as floral transition, somatic embryogenesis, and leaf and fruit development. In this work, an AtAGL15 ortholog, CsMADS26, was cloned from cucumber (Cucumis sativus L.). The open reading frame (ORF) of CsMADS26 is 669 bp in length, encoding a predicted protein of 222 amino acids. The CsMADS26 protein contains a highly conserved MADS-box domain and a variable C domain, as well as less conserved I and K domains. Phylogenetic relationship analysis revealed that CsMADS26 was clustered into the AGL15 clade of AGL15 subfamily. Expression analysis based on qRT-PCR showed that CsMADS26 is mainly expressed in reproductive organs including flowers and fruits. Transgenic Arabidopsis plants with ectopic expression of CsMADS26 exhibited curled rosette and cauline leaves, and the leaf size was much smaller than that of wild-type (WT) plants. These results provide clues for the functional characterization of CsMADS26 in the future.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018
    Description: Rice seedling segmentation is a fundamental process of extracting the guidance line for automated rice transplanters with a visual navigation system, which can provide crop row information to ensure the transplanter plants seedlings along the crop row without damaging seedlings. However, obtaining accurate rice seedling segmentation in paddy fields is still a challenging task. In this paper, a rice seedling segmentation method in paddy fields is proposed. The method mainly consists of two steps: image graying and threshold segmentation. In the procedure of image graying, the RGB (Red Green Blue) seedling image is first converted into the YCrCb color space and a Cg component is constructed. A color-index 2Cg-Cb-Cr is then constructed for image graying based on the excess green index (2G-R-B), which can reduce the influence of illumination variation on the equality of image graying. For the second step, an improved Otsu method is proposed to segment rice seedlings. With respect to the improved Otsu method in this research, the background variance of within class variance is weighted by a probability parameter to ensure that the method works well for both bimodal and near-unimodal histogram images, and the search range of gray levels is constrained to reduce the time to search the segmentation threshold. Experimental results indicate that the proposed method achieves better segmentation results and reduces the computational cost compared with the traditional Otsu method and other improved Otsu methods.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018
    Description: The Internet of Things aims at connecting everything, ranging from individuals, organizations, and companies to things in the physical and virtual world. The digital identity has always been considered as the keystone for all online services and the foundation for building security mechanisms such as authentication and authorization. However, the current literature still lacks a comprehensive study on the digital identity management for the Internet of Things (IoT). In this paper, we firstly identify the requirements of building identity management systems for IoT, which comprises scalability, interoperability, mobility, security and privacy. Then, we trace the identity problem back to the origin in philosophy, analyze the Internet digital identity management solutions in the context of IoT and investigate recent surging blockchain sovereign identity solutions. Finally, we point out the promising future research trends in building IoT identity management systems and elaborate challenges of building a complete identity management system for the IoT, including access control, privacy preserving, trust and performance respectively.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018
    Description: Clinically feasible methods for quantifying landing kinetics could help identify patients at risk for secondary anterior cruciate ligament injuries. The purpose of this study was to evaluate the validity and between-day repeatability of the loadsol insole during a single-hop and bilateral stop-jump. Thirty healthy recreational athletes completed seven single-hops and seven stop-jumps while simultaneous loadsol (100 Hz) and force plate (1920 Hz) measurements were recorded. Peak impact force, loading rate, and impulse were computed for the dominant limb, and limb symmetry was calculated between limbs for each measure. All outcomes were compared between the loadsol and force plate using intraclass correlation coefficients (ICC) and Bland–Altman plots. Fifteen participants completed a second day of testing to assess between-day repeatability of the loadsol. Finally, an additional 14 participants completed the first day of testing only to assess the validity of the newest generation loadsol, which sampled at 200 Hz. At 100 Hz, validity ICC results were moderate to excellent (0.686–0.982), and repeatability ICC results were moderate to excellent (0.616–0.928). The 200 Hz loadsol demonstrated improved validity ICC (0.765–0.987). Bland–Altman plots revealed that the loadsol underestimated load measures. However, this bias was not observed for symmetry outcomes. The loadsol device is a valid and repeatable tool for evaluating kinetics during landing.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018
    Description: The authors wish to correct Table 3 in their paper published in Sensors [...]
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018
    Description: The Chengdu–Chongqing Economic Zone (CCEZ), which is located in southwestern China, is the fourth largest economic zone in China. The rapid economic development of this area has resulted in many environmental problems, including extremely high concentrations of nitrogen dioxide (NO2) and fine particulate matter (PM2.5). However, current ground observations lack spatial and temporal coverage. In this study, satellite remote sensing techniques were used to analyze the variation in NO2 and PM2.5 from 2005 to 2015 in the CCEZ. The Ozone Monitoring Instrument (OMI) and the Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) product were used to retrieve tropospheric NO2 vertical columns and estimate ground-level PM2.5 concentrations, respectively. Geographically, high NO2 concentrations were mainly located in the northwest of Chengdu and southeast of Chongqing. However, high PM2.5 concentrations were mainly located in the center areas of the basin. The seasonal average NO2 and PM2.5 concentrations were both highest in winter and lowest in summer. The seasonal average NO2 and PM2.5 were as high as 749.33 × 1013 molecules·cm−2 and 132.39 µg·m−3 in winter 2010, respectively. Over 11 years, the annual average NO2 and PM2.5 values in the CCEZ increased initially and then decreased, with 2011 as the inflection point. In 2007, the concentration of NO2 reached its lowest value since 2005, which was 230.15 × 1013 molecules·cm−2, and in 2015, the concentration of PM2.5 reached its lowest value since 2005, which was 26.43 µg·m−3. Our study demonstrates the potential use of satellite remote sensing to compensate for the lack of ground-observed data when quantitatively analyzing the spatial–temporal variations in regional air quality.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018
    Description: An extended robot–world and hand–eye calibration method is proposed in this paper to evaluate the transformation relationship between the camera and robot device. This approach could be performed for mobile or medical robotics applications, where precise, expensive, or unsterile calibration objects, or enough movement space, cannot be made available at the work site. Firstly, a mathematical model is established to formulate the robot-gripper-to-camera rigid transformation and robot-base-to-world rigid transformation using the Kronecker product. Subsequently, a sparse bundle adjustment is introduced for the optimization of robot–world and hand–eye calibration, as well as reconstruction results. Finally, a validation experiment including two kinds of real data sets is designed to demonstrate the effectiveness and accuracy of the proposed approach. The translation relative error of rigid transformation is less than 8/10,000 by a Denso robot in a movement range of 1.3 m × 1.3 m × 1.2 m. The distance measurement mean error after three-dimensional reconstruction is 0.13 mm.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018
    Description: Efficient use of nitrogen (N) fertilizer is critically important for China’s food security and sustainable development. Crop models have been widely used to analyze yield variability, assist in N prescriptions, and determine optimum N rates. The objectives of this study were to use the CERES-Rice model to simulate the N response of different high-latitude, adapted flooded rice varieties to different types of weather seasons, and to explore different optimum rice N management strategies with the combinations of rice varieties and types of weather seasons. Field experiments conducted for five N rates and three varieties in Northeast China during 2011–2016 were used to calibrate and evaluate the CERES-Rice model. Historical weather data (1960–2014) were classified into three weather types (cool/normal/warm) based on cumulative growing degree days during the normal growing season for rice. After calibrating the CERES-Rice model for three varieties and five N rates, the model gave good simulations for evaluation seasons for top weight (R2 ≥ 0.96), leaf area index (R2 ≥ 0.64), yield (R2 ≥ 0.71), and plant N uptake (R2 ≥ 0.83). The simulated optimum N rates for the combinations of varieties and weather types ranged from 91 to 119 kg N ha−1 over 55 seasons of weather data and were in agreement with the reported values of the region. Five different N management strategies were evaluated based on farmer practice, regional optimum N rates, and optimum N rates simulated for different combinations of varieties and weather season types over 20 seasons of weather data. The simulated optimum N rate, marginal net return, and N partial factor productivity were sensitive to both variety and type of weather year. Based on the simulations, climate warming would favor the selection of the 12-leaf variety, Longjing 21, which would produce higher yield and marginal returns than the 11-leaf varieties under all the management strategies evaluated. The 12-leaf variety with a longer growing season and higher yield potential would require higher N rates than the 11-leaf varieties. In summary, under warm weather conditions, all the rice varieties would produce higher yield, and thus require higher rates of N fertilizers. Based on simulation results using the past 20 years of weather data, variety-specific N management was a practical strategy to improve N management and N partial factor productivity compared with farmer practice and regional optimum N management in the study region. The CERES-Rice crop growth model can be a useful tool to help farmers select suitable precision N management strategies to improve N-use efficiency and economic returns.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018
    Description: The last decades have witnessed advances in multiple wireless sensor networks in both the academic and industrial world. [...]
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...