ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy  (2)
  • Seismicity and tectonics
  • Wiley-Blackwell  (3)
  • Wiley
  • 2010-2014  (3)
  • 2010  (3)
Collection
Years
  • 2010-2014  (3)
Year
  • 1
    Publication Date: 2017-04-04
    Description: Prominent arrivals in the coda of seismograms from the wider Alpine area can be associated with lateral reflections of Love waves at the northern Apennines mountain chain (Italy), where structural heterogeneity causes an abrupt contrast in phase velocity. We discuss an approach to image lateral heterogeneity from reflected surface waves using intermediate-period, three- component coda waveforms as sources for an adjoint wavefield that propagates the reflections backward in time. We numerically compute three-dimensional sensitivity kernels for the dependence of coda waveforms on P velocity, S velocity and density, based upon correlations between the adjoint and the regular forward wavefields. We consider synthetic coda waveforms for a simplified model of the northern Apennines, as well as real coda observations from five moderate magnitude earthquakes (M W 4.6–5.6) in the southern Alps. Wave propagation is simulated using the spectral-element method, for which a 3-D regional earth model is used in the case of real data. Single and combined event sensitivity kernels provide clear images of the reflectivity associated with the northern Apennines in kernels for density and S-wave speed. The kernels show that surface wave reflections occur near the axial zone of the mountain chain. Apart from the Apennines, the approach is able to image other smaller reflectivity patches from the coda waveforms, like the Ivrea zone in the southern Alps. Our coda misfit kernels can be integrated in a gradient-based waveform tomography, where they could enhance the shar pness of the model at lateral discontinuities.
    Description: Published
    Description: 543–554
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Tomography; ; Computational seismology ; Wave scattering and diffraction ; Crustal structure ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We map the b-value in the subduction zone of theWellington region, NewZealand, using a high quality earthquake catalogue relocated with a 3-D seismic velocity model, consisting of 50 314 events that occurred between 1990 and 2005. In order to investigate heterogeneity in the crust of the overlying plate and in the upper plane of the Wadati–Benioff Zone (WBZ), we analyse a series of cross-sections perpendicular to the strike of the subduction zone. We calculate the b-values selecting events with magnitude of completeness ≥2.4 and depth ≤65 km and projecting the seismicity within 20 km on each side of the cross-sectional planes. We observe areas of high b-value (∼1.7) near the plate interface and regions of low b-value anomalies are detected both in the WBZ in the northwest region below 40 km depth and in the overlying plate in the northern South Island at 10 km depth. The anomalies are statistically significant based on Utsu’s p-test and the bootstrap method and are not data processing method or parameter dependent. We compare the b-value distribution with previously determined 3-D distributions of Vp, Vp/Vs andQp from seismic tomography. This comparison suggests that material inhomogeneity, caused by fluid filled cracks resulting from dehydration of the subducted slab and subducted sediments, is the predominant cause of b-value variation in the shallow part of this subduction zone. Our observations are consistent with a previously proposed conceptual model that fluid distribution in the shallow part of this subduction zone is controlled by the permeability of geological terranes in the overlying plate.
    Description: Published
    Description: 451-460
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic attenuation ; Seismic tomography ; Statistical seismology ; Subduction zone processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The axial zone of the Apenninic belt in central Italy is a tectonically active region affected by post-orogenic Quaternary extension. The present-day stress field is characterized by a minimum horizontal stress (Shmin) ∼ NE–SW oriented, derived mainly from earthquake focal mechanisms and secondarily from borehole breakouts and fault data. The paper describes the computation of the Shmin orientation along two deep boreholes located in the vicinity of the area hit by the 2009 April 6, Mw 6.3 L’Aquila earthquake. The analysed wells show breakout zones at a depth range between 1.4 and 4.6 km, giving precious information on a depth interval usually not investigated by any other data. The results show an Shmin N81 ± 22◦ and N74 ± 10◦ oriented for Varoni 1 and Campotosto 1 wells, respectively. The comparison among the breakouts, the 2009 seismic sequence, the past seismicity and the Quaternary faults indicates a small rotation of Shmin orientation from ∼ NE, in the southern, to ∼ ENE in the northern sector of the study area, where the wells are located. These differences are linked both to the natural variations of data and to the orientation of the main tectonic structures varying from NW–SE in the Abruzzi region to ∼ N–S moving toward the Umbro-Marchean Apennines. The identification of constant Shmin orientations with depth derived from all the examined active stress data, confirms the breakouts as reliable stress indicators also for aseismic areas.
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Seismicity and tectonics ; present-day stress ; borehole breakouts ; Italy ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...