ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (10,338)
  • BioMed Central  (5,183)
  • 2010-2014  (15,521)
  • 1975-1979
  • 2010  (15,521)
Collection
Years
  • 2010-2014  (15,521)
  • 1975-1979
Year
  • 1
    Publication Date: 2022-05-25
    Description: © 2010 The Authors. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial License. The definitive version was published in ICES Journal of Marine Science: Journal du Conseil 67 (2010): 365-378, doi:10.1093/icesjms/fsp262.
    Description: A commercial acoustic system, originally designed for seafloor applications, has been adapted for studying fish with swimbladders. The towed system contains broadband acoustic channels collectively spanning the frequency range 1.7–100 kHz, with some gaps. Using a pulse-compression technique, the range resolution of the echoes is ~20 and 3 cm in the lower and upper ranges of the frequencies, respectively, allowing high-resolution imaging of patches and resolving fish near the seafloor. Measuring the swimbladder resonance at the lower frequencies eliminates major ambiguities normally associated with the interpretation of fish echo data: (i) the resonance frequency can be used to estimate the volume of the swimbladder (inferring the size of fish), and (ii) signals at the lower frequencies do not depend strongly on the orientation of the fish. At-sea studies of Atlantic herring demonstrate the potential for routine measurements of fish size and density, with significant improvements in accuracy over traditional high-frequency narrowband echosounders. The system also detected patches of scatterers, presumably zooplankton, at the higher frequencies. New techniques for quantitative use of broadband systems are presented, including broadband calibration and relating target strength and volume-scattering strength to quantities associated with broadband signal processing.
    Description: The research was supported by the US Office of Naval Research, grants number N00014-04-1-0440 and N00014-04-1-0475, NOAA/CICOR cooperative agreement NA17RJ1223, NOAA/ National Marine Fisheries Service, and the J. Seward Johnson Chair of the WHOI Academic Programs Office.
    Keywords: Acoustic scattering ; Broadband ; Echosounder ; Fish ; Resonance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial License. The definitive version was published in Journal of Plankton Research 32 (2010): 1355-1368, doi:10.1093/plankt/fbq062.
    Description: Increasing availability and extent of biological ocean time series (from both in situ and satellite data) have helped reveal significant phenological variability of marine plankton. The extent to which the range of this variability is modified as a result of climate change is of obvious importance. Here we summarize recent research results on phenology of both phytoplankton and zooplankton. We suggest directions to better quantify and monitor future plankton phenology shifts, including (i) examining the main mode of expected future changes (ecological shifts in timing and spatial distribution to accommodate fixed environmental niches vs. evolutionary adaptation of timing controls to maintain fixed biogeography and seasonality), (ii) broader understanding of phenology at the species and community level (e.g. for zooplankton beyond Calanus and for phytoplankton beyond chlorophyll), (iii) improving and diversifying statistical metrics for indexing timing and trophic synchrony and (iv) improved consideration of spatio-temporal scales and the Lagrangian nature of plankton assemblages to separate time from space changes.
    Description: This study was supported by NSF grants to R.J.: OCE-0727033, 0815838 and 0732152. NSF grants to A.C.T.: OCE-0535386, 0815051 and 0814413. NSF grant to J.A.R.: OCE 0815336.
    Keywords: Plankton ; Phenology ; Life history ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial 2.5 License. The definitive version was published in Genome Biology and Evolution 2 (2010): 304, doi:10.1093/gbe/evq022.
    Description: Reduction of various biological processes is a hallmark of the parasitic lifestyle. Generally, the more intimate the association between parasites and hosts the stronger the parasite relies on its host's physiology for survival and reproduction. However, some systems have been held to be indispensable, for example, the core pathways of carbon metabolism that produce energy from sugars. Even the most hardened anaerobes that lack oxidative phosphorylation and the tricarboxylic acid cycle have retained glycolysis and some downstream means to generate ATP. Here we describe the deep-coverage genome resequencing of the pathogenic microsporidiian, Enterocytozoon bieneusi, which shows that this parasite has crossed this line and abandoned complete pathways for the most basic carbon metabolism. Comparing two genome sequence surveys of E. bieneusi to genomic data from four other microsporidia reveals a normal complement of 353 genes representing 30 functional pathways in E. bieneusi, except that only 2 out of 21 genes collectively involved in glycolysis, pentose phosphate, and trehalose metabolism are present. Similarly, no genes encoding proteins involved in the processing of spliceosomal introns were found. Altogether, E. bieneusi appears to have no fully functional pathway to generate ATP from glucose. Therefore, this intracellular parasite relies on transporters to import ATP from its host.
    Description: This work was supported by grants from the Canadian Institutes for Health Research (MOP-84265), the National Institutes of Health (NIH AI31788, R21 AI52792, and R21 AI064118), and the National Science Foundation (MCB- 0135272). N.C. is a Scholar of the Canadian Institute for Advanced Research and is supported by a fellowship from the Swiss National Science Foundation (NSF) (PA00P3- 124166). D.E. is supported by the Swiss NSF. P.J.K. is a Fellow of the Canadian Institute for Advanced Research and a Senior Scholar of the Michael Smith Foundation for Health Research.
    Keywords: Microsporidia ; Parasite ; Glycolysis ; Carbon metabolism ; Reduction ; Evolution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Genomics 11 (2010): 559, doi:10.1186/1471-2164-11-559.
    Description: Bathymodiolus azoricus is a deep-sea hydrothermal vent mussel found in association with large faunal communities living in chemosynthetic environments at the bottom of the sea floor near the Azores Islands. Investigation of the exceptional physiological reactions that vent mussels have adopted in their habitat, including responses to environmental microbes, remains a difficult challenge for deep-sea biologists. In an attempt to reveal genes potentially involved in the deep-sea mussel innate immunity we carried out a high-throughput sequence analysis of freshly collected B. azoricus transcriptome using gills tissues as the primary source of immune transcripts given its strategic role in filtering the surrounding waterborne potentially infectious microorganisms. Additionally, a substantial EST data set was produced and from which a comprehensive collection of genes coding for putative proteins was organized in a dedicated database, "DeepSeaVent" the first deep-sea vent animal transcriptome database based on the 454 pyrosequencing technology. A normalized cDNA library from gills tissue was sequenced in a full 454 GS-FLX run, producing 778,996 sequencing reads. Assembly of the high quality reads resulted in 75,407 contigs of which 3,071 were singletons. A total of 39,425 transcripts were conceptually translated into amino-sequences of which 22,023 matched known proteins in the NCBI non-redundant protein database, 15,839 revealed conserved protein domains through InterPro functional classification and 9,584 were assigned with Gene Ontology terms. Queries conducted within the database enabled the identification of genes putatively involved in immune and inflammatory reactions which had not been previously evidenced in the vent mussel. Their physical counterpart was confirmed by semi-quantitative quantitative Reverse-Transcription-Polymerase Chain Reactions (RT-PCR) and their RNA transcription level by quantitative PCR (qPCR) experiments. We have established the first tissue transcriptional analysis of a deep-sea hydrothermal vent animal and generated a searchable catalog of genes that provides a direct method of identifying and retrieving vast numbers of novel coding sequences which can be applied in gene expression profiling experiments from a non-conventional model organism. This provides the most comprehensive sequence resource for identifying novel genes currently available for a deep-sea vent organism, in particular, genes putatively involved in immune and inflammatory reactions in vent mussels. The characterization of the B. azoricus transcriptome will facilitate research into biological processes underlying physiological adaptations to hydrothermal vent environments and will provide a basis for expanding our understanding of genes putatively involved in adaptations processes during post-capture long term acclimatization experiments, at "sea-level" conditions, using B. azoricus as a model organism.
    Description: We acknowledge the Portuguese Foundation for Science and Technology, FCT-Lisbon and the Regional Azorean Directorate for Science and Technology, DRCT-Azores, for pluri-annual and programmatic PIDDAC and FEDER funding to IMAR/DOP Research Unit #531 and the Associated Laboratory #9 (ISR-Lisboa); the Luso-American Foundation FLAD (Project L-V- 173/2006); the Biotechnology and Biomedicine Institute of the Azores (IBBA), project M.2.1.2/I/029/2008-BIODEEPSEA and the project n° FCOMP-01-0124- FEDER-007376 (ref: FCT PTDC/MAR/65991/2006-IMUNOVENT; coordinated by RB) under the auspices of the COMPETE program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Evolutionary Biology 9 (2009): 292, doi:10.1186/1471-2148-9-292.
    Description: Bacterial endosymbiosis has a recurring significance in the evolution of insects. An estimated 10-20% of insect species depend on bacterial associates for their nutrition and reproductive viability. Members of the ant tribe Camponotini, the focus of this study, possess a stable, intracellular bacterial mutualist. The bacterium, Blochmannia, was first discovered in Camponotus and has since been documented in a distinct subgenus of Camponotus, Colobopsis, and in the related genus Polyrhachis. However, the distribution of Blochmannia throughout the Camponotini remains in question. Documenting the true host range of this bacterial mutualist is an important first step toward understanding the various ecological contexts in which it has evolved, and toward identifying its closest bacterial relatives. In this study, we performed a molecular screen, based on PCR amplification of 16S rDNA, to identify bacterial associates of diverse Camponotini species. Phylogenetic analyses of 16S rDNA gave four important insights: (i) Blochmannia occurs in a broad range of Camponotini genera including Calomyrmex, Echinopla, and Opisthopsis, and did not occur in outgroups related to this tribe (e.g., Notostigma). This suggests that the mutualism originated in the ancestor of the tribe Camponotini. (ii) The known bacteriocyte-associated symbionts of ants, in Formica, Plagiolepis, and the Camponotini, arose independently. (iii) Blochmannia is nestled within a diverse clade of endosymbionts of sap-feeding hemipteran insects, such as mealybugs, aphids, and psyllids. In our analyses, a group of secondary symbionts of mealybugs are the closest relatives of Blochmannia. (iv) Blochmannia has cospeciated with its known hosts, although deep divergences at the genus level remain uncertain. The Blochmannia mutualism occurs in Calomyrmex, Echinopla, and Opisthopsis, in addition to Camponotus, and probably originated in the ancestral lineage leading to the Camponotini. This significant expansion of its known host range implies that the mutualism is more ancient and ecologically diverse than previously documented. Blochmannia is most closely related to endosymbionts of sap-feeding hemipterans, which ants tend for their carbohydrate-rich honeydew. Based on phylogenetic results, we propose Camponotini might have originally acquired this bacterial mutualist through a nutritional symbiosis with other insects.
    Description: Funding for this research was provided by grants from the NSF (MCB-0604177) and NIH (R01GM062626) to JJW, and from the NSF-supported Ant AToL project (EF-0431330) to PSW and SGB.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-12-01
    Print ISSN: 0716-078X
    Electronic ISSN: 0717-6317
    Topics: Biology , Geosciences
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-12-01
    Print ISSN: 0716-078X
    Electronic ISSN: 0717-6317
    Topics: Biology , Geosciences
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-12-01
    Print ISSN: 0716-078X
    Electronic ISSN: 0717-6317
    Topics: Biology , Geosciences
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2010-12-01
    Print ISSN: 0716-078X
    Electronic ISSN: 0717-6317
    Topics: Biology , Geosciences
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...