ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mt. Etna  (8)
  • 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport
  • Cabildo Insular de Tenerife Fundación Canaria ITER  (6)
  • Springer  (2)
  • Editrice Compositori  (1)
  • Blackwell Publishing Ltd
  • Elsevier Science Limited
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2010-2014  (9)
  • 2005-2009
  • 2010  (9)
Collection
Publisher
Years
  • 2010-2014  (9)
  • 2005-2009
Year
  • 1
    Publication Date: 2020-11-16
    Description: Active volcanoes characterized by open conduit conditions generate sonic and infrasonic signals, whose investigation provides useful information for both monitoring purposes and studying the dynamics of explosive processes. In this work, we discuss the automatic procedures implemented for a real-time application to the data acquired by a permanent network of five infrasound stations running at Mt. Etna volcano. The infrasound signals at Mt. Etna consist in amplitude transients, called infrasound events. The adopted procedure uses a multi-algorithm approach for event detection, counting, characterization and location. It is designed for an efficient and accurate processing of infrasound records provided by single-site and array stations. Moreover, the source mechanism of these events can be investigated off-line or in near real-time by using three different models: i) Strombolian bubble; ii) resonating conduit and iii) Helmholtz resonator. The infrasound waveforms allow us to choose the most suitable model, to get quantitative information about the source and to follow the time evolution of the source parameters.
    Description: Published
    Description: 1215–1231
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Description: open
    Keywords: infrasound ; monitoring system ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: On 30 December 2002, a 25-30 × 106 m3 landslide on the NW flank of Stromboli volcano produced a tsunami that caused relevant damage to the Stromboli village and to the neighboring islands of the Aeolian archipelago. The NW flank of Stromboli has been the site of several, cubic kilometer-scale, landslides during the past 13 ka. In this paper we present sedimentological and compositional data of deep-sea cores recovered from a site located about 24 km north of the island. Our preliminary results indicate that: (i) turbidity currents were effectively generated by the large-scale failures and (ii) volcanogenic turbidity current deposits retain clues of the landslide source and slope failure dynamics. By analogy with Hawaii and the Canary islands we confirm that deep-sea sediments can be effectively used to assess the age and scale of past landslide events giving an important contribution to the tsunami hazard assessment of this region.
    Description: Unpublished
    Description: -
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: reserved
    Keywords: Landslide ; turbidite ; tsunami ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In 2009, Mt. Etna (Italy) activity was characterised by the end of a long-lasting flank eruption started on 13 May 2008 and by the opening of a new summit degassing vent on the E flank of the South-East crater on 6 November. This was preceded by a sequence of significant anomalies in volcanic degassing, detected by periodic measurements of soil CO2 efflux on the east flank of the volcano, continuous measurements of SO2 flux from five fixed monitoring stations, and periodic FTIR measurements of the SO2/HCl and SO2/HF molar ratios in the volcanic plume. Since April 2009, soil and crater emissions showed a progressive increase marked at least by two major steps, in April-May and September-October. Increases were not observed simultaneously; in fact, they were detected first in soil CO2 emissions and then, a few days/weeks later, in crater SO2 flux. Only minor increases of HCl and HF crater fluxes were observed between November and December. The highest SO2 and halogens fluxes were recorded in coincidence with the opening of the November 6 vent. The degassing behaviour of the volcano in 2009 is consistent with the differential release of magmatic gas species, according to their different solubilities, from a magma body rising from ~5 km depth to the surface. Our results suggest the start of a new phase in Etna’s activity, in which the new vent might reflect improved efficiency in the release of magmatic gas through the main feeding system, supplied by a magma body stored at depths between 4 and 2 km. If degassing at the new vent will remain steadystate, thus forming a stable feeding system, then its opening might represent the eastward migration of the South-East crater activity with the likely formation of a new stable summit cone.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; crater degassing ; soil gases ; volcanic activity ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Mount Etna in Sicily (973 km2), the most active European volcano, is known as one of the largest contributors of magmatic CO2 released to the atmosphere. A significant part of this gas is released in diffuse form through the volcano’s flanks, along faults and fractured zones, particularly around its summit (about 3350 m). Etna is also characterized by significant and often dramatic slope failure of its eastern flank, which is thought to trigger summit collapses and some lateral eruptions. In order to map the faulted areas near Etna’s summit and to study possible weak zones, a diffuse CO2 efflux survey was carried out at Mt. Etna in October, 2008. A total of 1442 sites were surveyed for soil CO2 efflux and soil temperature over an area of about 9 km2 that included most of the summit part of Mt. Etna above 2600 m a.s.l. The results show the presence of several degassing faults in all of the surveyed area except its west part, which seems to be structurally stable. Most of the degassing faults start from the summit craters and run parallel to the borders of the eastward collapsing sector of the volcano. Many of them are related to the development of the South-East Crater, but others seem to be related to a large buried crater rim, probably a remnant of the 1669 collapse crater formed during the largest eruption in the last 2000 years. Some degassing faults are not accompanied by thermal anomalies, thus suggesting that the gas source is too deep and/or the ground permeability is too low to allow high-enthalpy fluids to reach the surface before their condensation. These “cold” faults bound the anomalous degassing areas to the west, therefore they would be relatively new and shallow, suggesting a progressive westward shift of slope failure.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; soil CO2 effluxes ; hidden faults ; soil temperature ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: During the period 2007-2009, the volcanic activity of Mt. Etna (Italy) was characterized by a series of paroxysmal events in 2007 that preceded a long-lasting (419 days) flank eruption. Four months after the end of that eruption, the opening of a new summit degassing vent marked the beginning of a new phase of activity, so far characterized only by degassing phenomena. Soil radon activity and soil temperature were monitored every 15 minutes at a low-temperature fumarole near the summit craters of Etna starting from late May 2007. The temporal pattern of these parameters showed in general their significant cross-correlation, thus pointing to a common gas transport mechanism. Magmatic/ hydrothermal fluids in the sub-surface ground are convectively transported towards the surface along a major fault that runs from Etna’s summit towards SSE and partly marks the boundary of an eastward sliding sector of the volcano that is involved into phenomena of flank collapse. Both of the monitored parameters indicate the occurrence of three long-term cycles of soil degassing during the period investigated, each one characterized by high average values of temperature and radon. The first cycle started in June 2007 and lasted until early April 2008, thus accompanying the recharge of the volcano. The second cycle lasted from late April 2008 to mid-May 2009, thus preceding and accompanying the first phase of the 13 May 2008 – 5 July 2009 flank eruption. The third cycle started in mid-July 2009 and it’s still ongoing. It marked a new recharge of the volcano that culminated in the opening of the new summit degassing vent in early November 2009. Therefore, continuous monitoring of soil radon and soil temperature near the summit of Mt. Etna has proven helpful in determining states of volcanic unrest related to recharge and/or pre-eruptive magma ascent.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; soil radon ; active faults ; volcanic activity
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Active volcanoes can influence surrounding vegetation both through passive degassing during quiescent periods and through eruptive degassing, by introducing into the atmosphere several metals as gases and particles. The chemical composition of tree-rings has been generally used to investigate the effects of anthropogenic gas emissions and dendrochemical methods have successfully recorded variations in the pollution levels. The use of tree-rings analysis in active volcanic areas has shown that vascular plants could be used as archives of volcanogenic metals deposition. Tree cores of Pinus Nigra and Populus tremula were collected in sites located both on the downwind (Citelli and Mt. Fontane sites) and on the upwind (Mt. Intraleo site) sectors of Mt. Etna in June 2008. Individual and composited tree-rings were analyzed by inductively-coupled-plasma mass-spectrometry for the determination of several trace elements (As, Cd, Li, Mn, Mo, Ni, Se, Sr, Pb, V). Tree cores were dated dendrochronologically before analysis, and their ages date back to 1915. The preliminary results show that some elements have significant differences in concentration between the two tree species analyzed, and in general metals are more concentrated in the samples from the downwind sites, hence more exposed to crater gas emissions. Furthermore, the temporal patterns of metal contents show some evident peaks likely related to some of the major flank eruptions of the volcano, particularly those occurred after 1945. This method can be used in many active volcanoes to reconstruct their past degassing rate and recognize possible eruptive cycles, thus helping forecast their future behaviour.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; tree rings ; trace metals ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: This work reports the first estimation of total CO2 emission to the atmosphere (visible and non-visible) from Etna volcano, Sicily, by means of direct methods. Until present, only direct measurements of the CO2 emitted by the volcanic plume of Etna had been performed, and not data of direct soil CO2 efflux from surface environment of this volcano were available. To estimate the total CO2 emission, 4075 soil CO2 efflux measurements were performed by means of the accumulation chamber method in October-November 2008. Most of the study area showed background levels of soil CO2 efflux (0.53 g·m-2·d-1), while peak values (〉1725 g·m-2·d-1) were mainly identified inside the summit craters and at Torre del Filosofo area. Other zones with relatively high CO2 efflux values were identified at Paternó, Zafferana Etnea and Trecastagni-Viagrande. The total output of CO2 diffuse emission from the study area (973 km2) was computed in 20320 t·d-1, where 1671 t·d-1, about 8.3% of CO2 diffuse emission, was emitted by an area of 87 km2 which includes the summit craters and Torre del Filosofo. To evaluate the visible/diffuse CO2 emission ratio, plume CO2 emission rate was estimated by multiplying SO2 emission rate times observed CO2/SO2 plume ratio following the methodology described by Shinohara (2005). Total CO2 visible emission was estimated about 31.5 kt·d-1, value is in the range reported for Etna volcano (0.9-67.5 kt·d-1; Aiuppa et al., 2006). The total output of CO2 diffuse emission represents 39% of the total CO2 emission from Etna volcano to the atmosphere. These results agree with the observations of Allard et al. (1991), who reported that diffuse and visible CO2 emissions were in the same order of magnitude. This study demonstrates the importance of measuring diffuse CO2 emissions from active volcanoes like Mt. Etna in order to have a better approach on the global estimate of CO2 emission to the atmosphere from subaerial volcanoes
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; soil CO2 effluxes ; CO2 budget ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: From October 2008 to November 2009, soil CO2 and Rn surveys have been performed, in order to get insights upon active tectonic structures in a densely populated sector of the South-Eastern flank of Mt Etna, which seems to be involved in the flank dynamics, as highlighted by satellite data (INSAR). The investigated area extends about 150 km2, in an area, where INSAR data detected several lineaments not known from geological surveys. The method adopted to perform the 345 soil CO2 measurements is the “dynamic concentration” method (Gurrieri and Valenza, 1988; Camarda et al., 2006), which provides a proxy for soil CO2 fluxes. The gas measurements have been performed along transects roughly orthogonal to the lineaments, with measurement points spaced about 100m. The method appeared more efficient than a regular grid, which would have requested much more measurements and a time-consuming field work. CO2 data show the highest values, along each transect, very close to the lineaments evidenced by INSAR observations. Anomalous values also occur in correspondence of eruptive fractures. In some portions of the investigated area, rather broad anomalies are observed, and this would imply that, instead of a single well-defined lineament, a wider fault zone probably exists. A set of both CO2 and Rn measurements, performed at about 900m of altitude, are worth of note, because they allow identifying the lengthening of detected lineaments at higher elevation, where the INSAR data are poorly informative. Finally, at the base of the volcanic edifice, the soil gas anomalies strikingly define the active structures until almost the coastline through the northern periphery of Catania town. The coupling of the two methods thus revealed as a powerful tool to detect buried active structures, which conversely do not show significant field evidences.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: Mt. Etna ; soil gases ; gravitational spreading ; INSAR ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: In volcanology, one of the most important instruments for scientific community interested in modelling the physical processes related to magma movements in the shallow crust is geodetic data. Since the end of the 1980s, GPS surveys and Continuous GPS stations (CGPS) have greatly improved the possibility to measure such movements with high time and space resolution. However, physical modelling requires that any external influence on the data, not directly related to the investigated quantity, must be filtered. One major tricky factor in determining a deformation field using GPS displacement vectors and velocities is the correct choice of a stable reference frame. In this work, using more than a decade of GPS measurements, we defined a local reference frame in order to refer the Mt. Etna ground deformation pattern to a rigid block. In particular, we estimated the Euler pole for the rigid block by minimizing, with a weighted least squares inversion, the adjustments to two horizontal components of GPS velocity at 13 “fiducial” sites located within 350 km around Mt. Etna. The inversion inferred an Euler pole located at 38.450° N and -107.702° E and a rotation rate of 0.263 deg/Myr.
    Description: Published
    Description: 48-79
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: GPS monitoring ; Euler pole ; GPS velocity ; Rigid block ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...