ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques  (2)
  • Flow transitions  (1)
  • Wiley  (2)
  • SEISMOLOGICAL SOC AMER  (1)
  • 2015-2019
  • 2010-2014  (3)
  • 2010  (3)
Collection
Years
  • 2015-2019
  • 2010-2014  (3)
Year
  • 1
    Publication Date: 2017-04-04
    Description: Stromboli is a 3000 m high island volcano, rising to 900 m above sea-level. It is the most active volcano of the Aeolian Archipelago in the Tyrrhenian Sea (Italy). Major, large volume (1 km3) sector collapses, four occurring in the last 13 kyr, have played an important role in shaping the north-western flank (Sciara del Fuoco) of the volcano, potentially generating a high-risk tsunami hazard for the Aeolian Islands and the Italian coast. However, smaller volume, partial collapses of the Sciara del Fuoco have been shown to be more frequent tsunami-generating events. One such event occurred on 30 December 2002, when a partial collapse of the north-western flank of the island took place. The resulting landslide generated 10 m high tsunami waves that impacted the island. Multibeam bathymetry, side-scan sonar imaging and visual observations reveal that the landslide deposited 25 to 30 × 106 m3 of sediment on the submerged slope offshore from the Sciara del Fuoco. Two contiguous main deposit facies are recognized: (i) a chaotic, coarse-grained (metre-sized to centimetre-sized clasts) deposit; and (ii) a sand deposit containing a lower, cross-bedded sand layer and an upper structureless pebbly sand bed capped by sea floor ripple bedforms. The sand facies develops adjacent to and partially overlying the coarse deposits. Characteristics of the deposits suggest that they were derived from cohesionless, sandy matrix density flows. Flow rheology and dynamics led to the segregation of the density flow into sand-rich and clast-rich regions. A range of density flow transitions, both in space and in time, caused principally by particle concentration and grain-size partitioning within cohesionless parent flows was identified in the deposits of this relatively small-scale submarine landslide event.
    Description: Published
    Description: 1488-1504
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Flow transitions ; island volcano ; subaqueous cohesionless density flows ; submarine landslide deposits ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A series of computer microtomography experiments are reported which were performed by using a third-generation synchrotron radiation source on volcanic rocks from various active hazardous volcanoes in Italy and other volcanic areas in the world. The applied technique allowed the internal structure of the investigated material to be accurately imaged at the micrometer scale and three-dimensional views of the investigated samples to be produced as well as three-dimensional quantitative measurements of textural features. Thegeometryof thevesicle (gas-filledvoid) network in volcanic products of both basaltic and trachytic compositions were particularly focused on, as vesicle textures are directly linked to the dynamics of volcano degassing. This investigation provided novel insights into modes of gas exsolution, transport and loss in magmas that were not recognized in previous studies using solely conventional two- dimensional imaging techniques. The results of this study are important to understanding the behaviour of volcanoes and can be combined with other geosciences disciplines to forecast their future activity.
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: high-resolution three-dimensional imaging ; X-ray computed microtomography ; volcanic eruptions ; volcanic rock textures ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Modern seismic networks have grown to become increasingly complex infrastructures, composed of hundreds of devices and data streams scattered over wide geographic regions. Among the components of such networks are heterogeneous seismic and environmental sensors, digitizers, data loggers, data collection servers, wired and wireless communication hardware, and other devices and software subsystems charged with different data handling tasks, such as continuous data storage or analysis. In order to be effectively managed, a seismic network therefore needs a tiered software application. This application encompasses tasks that range from the low-level (hardware monitoring for failure detection) to the mid-level (data quality control) to the high-level (managing the final output of the network: recorded events, waveforms, and parametric data). At the same time such an application should provide a centralized and easy-to-use graphical user interface (GUI). Over the past two decades, several institutions and commercial companies have devoted great efforts to the development of software tools to manage and centralize the data acquisition and analysis for regional to global seismic networks. Among the most valuable products worth mentioning are: Earthworm, an open-source real-time seismic management system developed by the U.S. Geological Survey (Johnson et al. 1995); Antelope, a commercial real-time system for environmental data collection, developed by Boulder Real Time Technologies (BRTT 2008); and the more recent SeisComP (Hanka et al. 2000), an open-source tool for real-time data acquisition and analysis developed by the German Research Centre for Geosciences (GFZ-Potsdam). Although well-suited for real-time data collection and analysis, these systems do not currently provide advanced features for managing the infrastructure of a seismic network, such as state-of-health monitoring of the instrumentation or tracking all the network appliances.Trying to fill this gap, Instrumental Software Technologies (ISTI 2008) has recently developed SeisNetWatch (SeisNetWatch 2008), a tool for monitoring and controlling the data quality and the status of several types of data loggers and real-time seismic management systems. This desktop- and Web-accessible tool features a core system and a user interface written in Java, plus several “agents” each interacting with a particular piece of hardware or system. During the development of the Irpinia Seismic Network (ISNet) in southern Italy (Weber et al. 2007), we decided to address our needs of hardware monitoring and data management by developing our own solution, a Web-based application called SeismNet Manager. The application is designed as a graphical front-end to ISNet for internal and external users of the network, as well as its administrators, with an interface that is simple to use. SeismNet Manager leverages an instrument database and a seismic database to keep track of the hardware components that comprise the network (such as stations, servers, devices) and the data they produce (such as recorded waveforms and events). The application, universally accessible through a Web browser, fulfills the following needs: • to keep a detailed inventory of the multiple components that constitute a seismic network, including stations, sensors, data loggers, network hardware, generic hardware, data servers, and communication links; • to maintain a historical record of the installations and of the configuration details, as well as of the mutual connections of said components; • to perform real-time monitoring of some of the devices (hardware state and “health” problems, quality of the output) for alerting network operators of problems and complementing the seismic data; • to manage the seismic data produced by the network, obtained either through automatic data retrieval procedures or manual insertion by administrators (detected events, seismic recordings, parametric information) and to perform some routine tasks on returned data, including inspection, filtering, picking, and flagging. • to offer a Web-based interface that lets data consumers or network operators insert, edit, search, download and visualize all the available information (as tables, graphs, maps, waveform plots, and 3D renderings). To accomplish these goals, which are not specific to ISNet but are shared by most seismic networks, we made use of opensource technological solutions such as Linux (Debian 2008), PostgreSQL (PostgreSQL 2008), and Tomcat (Tomcat 2008). Flexibility and configurability was a priority, so that we could tailor SeismNet Manager to the specific needs and actual hardware of different networks and could manage multiple networks. At the same time, SeismNet Manager is not designed as a “be-all do-all” system performing every task needed in a seismic network, some of which are better left to specialized and standard software packages. For instance, in ISNet the continuous data acquisition and storage from the stations and the real-time seismic data processing for seismic early warning are implemented elsewhere, as discussed below. SeismNet Manager is thus built on top of the various elements and subsystems already operating in a network.
    Description: Published
    Description: 420-430
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: reserved
    Keywords: SeismNet Manager ; Manage Hardware ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...