ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (9)
  • Nitrogen fixation
  • Elsevier  (7)
  • Springer  (3)
  • 2015-2019
  • 2010-2014  (10)
  • 1985-1989
  • 2010  (10)
Collection
Years
  • 2015-2019
  • 2010-2014  (10)
  • 1985-1989
Year
  • 1
    Publication Date: 2021-04-07
    Description: During volcanic eruptions, volcanic ash transport and dispersion models (VATDs) are used to forecast the location and movement of ash clouds over hours to days in order to define hazards to aircraft and to communities downwind. Those models use input parameters, called “eruption source parameters”, such as plume height H, mass eruption rate Ṁ, duration D, and the mass fraction m63 of erupted debris finer than about 4 or 63 μm, which can remain in the cloud for many hours or days. Observational constraints on the value of such parameters are frequently unavailable in the first minutes or hours after an eruption is detected. Moreover, observed plume height may change during an eruption, requiring rapid assignment of new parameters. This paper reports on a group effort to improve the accuracy of source parameters used by VATDs in the early hours of an eruption. We do so by first compiling a list of eruptions for which these parameters are well constrained, and then using these data to review and update previously studied parameter relationships. We find that the existing scatter in plots of H versus Ṁ yields an uncertainty within the 50% confidence interval of plus or minus a factor of four in eruption rate for a given plume height. This scatter is not clearly attributable to biases in measurement techniques or to well-recognized processes such as elutriation from pyroclastic flows. Sparse data on total grain-size distribution suggest that the mass fraction of fine debris m63 could vary by nearly two orders of magnitude between small basaltic eruptions ( 0.01) and large silicic ones (〉 0.5). We classify eleven eruption types; four types each for different sizes of silicic and mafic eruptions; submarine eruptions; “brief” or Vulcanian eruptions; and eruptions that generate co-ignimbrite or co-pyroclastic flow plumes. For each eruption type we assign source parameters. We then assign a characteristic eruption type to each of the world's 1500 Holocene volcanoes. These eruption types and associated parameters can be used for ash-cloud modeling in the event of an eruption, when no observational constraints on these parameters are available.
    Description: Published
    Description: 10-21
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic eruption ; aircraft ; volcanic plumes ; ash clouds ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-15
    Description: No eruption, no caldera collapse, and no landslide can take place in a volcano unless its state of stress is suitable for the associated type of rock failure. The state of stress, in turn, results in deformation, and both stress and deformation depend on the mechanical properties of the rocks that constitute the volcano. Understanding stress and deformation in volcanoes is thus of fundamental importance for understanding unrest periods and for accurate forecasting volcano failure, such as may result in large-scale lateral and vertical collapses and eruptions.
    Description: Published
    Description: 1-3
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: stress, deformation, volcano tectonics, physical propertie of volcanic rocks ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Basaltic 'a'ā lava flows often demonstrate compound morphology, consisting of many juxtaposed and superposed flow units. Following observations made during the 2001 eruption of Mt. Etna, Sicily, we examine the processes that can result from the superposition of flow units, when the underlying units are sufficiently young to have immature crusts and deformable cores. During this eruption, we observed that the emplacement of new surface flow units may reactivate older, underlying units by squeezing the still-hot flow core away from the site of loading. Here, we illustrate three different styles of reactivation that depend on the time elapsed between the emplacement of the two flow units, hence the rheological contrast between them. For relatively long time intervals (2 to 15 days), and consequently significant rheological contrasts, superposition can pressurise the underlying flow unit, leading to crustal rupture and the subsequent extrusion of a small volume of high yield strength lava. Following shorter intervals (1 to 2 days), the increased pressure caused by superposition can result in renewed, slow advance of the underlying immature flow unit front. On timescales of 〈 1 day, where there is little rheological contrast between the two units, the thin intervening crust can be disrupted during superposition, allowing mixing of the flow cores, large-scale reactivation of both units, and widespread channel drainage. This mechanism may explain the presence of drained channels in flows that are known to have been cooling-limited, contrary to the usual interpretation of drainage as an indicator of volume-limited behaviour. Because the remobilisation of previously stagnant lava can occur swiftly and unexpectedly, it may pose a significant hazard during the emplacement of compound flows. Constant monitoring of flow development to identify areas where superposition is occurring is therefore recommended, as this may allow potentially hazardous rapid drainage events to be forecast. Reactivation processes should also be borne in mind when reconstructing the emplacement of old lava flow fields, as failure to recognise their effects may result in the misinterpretation of features such as drained channels.
    Description: The work was funded by NERC studentship NER/S/A2005/13681 and grant NE/F018010/1.
    Description: Published
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: Etna ; flow unit ; compound flow ; superposition ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In addition to rhythmic slug-driven Strombolian activity, Stromboli volcano occasionally produces discrete explosive paroxysms (2 per year on average for the most frequent ones) that constitute a major hazard and whose origin remains poorly elucidated. Partial extrusion of the volatile-rich feeding basalt as aphyric pumice during these events has led to consider their triggering by the fast ascent of primitive magma blobs from possibly great depth. Here I propose instead that most of the paroxysms could be triggered and driven by the fast upraise of CO2-rich gas pockets generated by bubble foam growth and collapse in the sub-volcano plumbing system. Data for the SO2 and CO2 crater plume emissions with the magma sulphur content are used to show that Stromboli’s feeding magma originally may contain as much as 2 wt% of carbon dioxide and early coexists with an abundant CO2-rich gas phase with high CO2/SO2 molar ratio (60 at 10 km depth below the vents, compared to ~7 in time-averaged crater emissions). Pressure-related modelling indicates that the time-averaged crater gas composition and output are well accounted for by closed system decompression of the basalt-gas mixture until about the volcano-crust interface (~3 km depth), followed by open degassing and crystallization in the volcano conduits. However, both the low viscosity and high vesicularity of the basaltic magma permit bubble segregation and bubble foam growth at deep sill-like feeder discontinuities and at shallower physical boundaries (the volcano-crust interface) where the gas-rich aphyric basalt interacts with the unerupted crystal-rich, viscous magma drained back from the volcano conduits. Gas pressure build up and bubble foam collapse at these boundaries will intermittently trigger the sudden upraise of CO2-rich gas blobs that constitute the main driving force of the paroxysms. Deeper-sourced gas blobs, driving the most powerful explosions, will be the richest in CO2 and have highest CO2/SO2 ratios. This mechanism is shown to account well for the dynamic, seismic and petrologic features of Stromboli’s paroxysms and, hence, to provide a potential alternative interpretation for their genesis and their forecasting. Enhanced bubble foam leakage prior to a paroxysm, or foam emptying in several steps, should lead indeed to precursory upstream of CO2-rich gas and increasing CO2/SO2 ratio in crater plume emissions. The recent detection of such signals prior to two explosions in December 2006 and March 2007 strongly supports this expectation and the model proposed in this study.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: explosive paroxysms ; CO2-rich gas ; basaltic volcanoes ; gas bubbles ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We present here a new hypothesis to explain the high mobility of same rapid mass movements of rock fragments. We suggest that oscillations of flows with a quasi-rigid plug can result in reduction of their apparent coefficient of friction. This coefficient is computed as the ratio between drop in elevation and horizontal distance of travel. In our model, the effective friction during a downhill journay is a combination of the friction forces acting on the plug during the ascending and descending parts of its slope-normal oscillations. As a consequence of oscillations, the decreased contact with ground surface reduces the apparent coefficent of friction. Channel lateral surfaces can also support a portion of plug weight giving another contribution in the reduction of this coefficient. The support of lateral surfaces requires a relatively narrow channel such as a gully or the presence of levees whereas the reduced basal contact can be important also in larger channels that do not provide lateral support. We suggest that slope-normal oscillations are generated by ground asperities. The true coefficent of friction are larger than the apparent one because they account energetically for the oscillations that reduce basal contact. Thus we can say that our model is able to explain long runout distances as long as the energy dissipated by oscillations is accounted for by the true coefficents of friction that enter the calculations. Field and experimental investigation of several ideas discussed in this paper constitutes important aspects of future research that will improve the understanding of granular flows mobility.
    Description: Published
    Description: 23-32
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: pyroclastic flows ; rock avalanches ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: On 30 December 2002, a 25-30 × 106 m3 landslide on the NW flank of Stromboli volcano produced a tsunami that caused relevant damage to the Stromboli village and to the neighboring islands of the Aeolian archipelago. The NW flank of Stromboli has been the site of several, cubic kilometer-scale, landslides during the past 13 ka. In this paper we present sedimentological and compositional data of deep-sea cores recovered from a site located about 24 km north of the island. Our preliminary results indicate that: (i) turbidity currents were effectively generated by the large-scale failures and (ii) volcanogenic turbidity current deposits retain clues of the landslide source and slope failure dynamics. By analogy with Hawaii and the Canary islands we confirm that deep-sea sediments can be effectively used to assess the age and scale of past landslide events giving an important contribution to the tsunami hazard assessment of this region.
    Description: Unpublished
    Description: -
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: reserved
    Keywords: Landslide ; turbidite ; tsunami ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-24
    Description: A multidisciplinary geological and compositional investigation allowed us to reconstruct the occurrence of flank eruptions on the lower NE flank of Stromboli volcano since 15 ka. The oldest flank eruption recognised is Roisa, which occurred at ~15 ka during the Vancori period, and has transitional compositional characteristics between the Vancori and Neostromboli phases. Roisa was followed by the San Vincenzo eruption that took place at ~12 ka during the early stage of Neostromboli period. The eruptive fissure of San Vincenzo gave rise to a large scoria cone located below the village of Stromboli, and generated a lava flow, most of which lies below sea level. Most of the flank eruptions outside the barren Sciara del Fuoco occurred in a short time, between ~9 and 7 ka during the Neostromboli period, when six eruptive events produced scoria cones, spatter ramparts and lava flows. The Neostromboli products belong to a potassic series (KS), and cluster in two differently evolved groups. After an eruptive pause of ~5,000 years, the most recent flank eruption involving the NE sector of the island occurred during the Recent Stromboli period with the formation of the large, highly K calc-alkaline lava flow field, named San Bartolo. The trend of eruptive fissures since 15 ka ranges from N30°E to N55°E, and corresponds to the magma intrusions radiating from the main feeding system of the volcano.
    Description: The mapping of Stromboli was supported by a grant to S. Calvari (Project V2/01, 2005–2007, funded by the Istituto Nazionale di Geofisica e Vulcanologia and by the Italian Civil Protection). This work was partly supported by INGV through a research grant financed by MIUR-FIRB to G. Norini. We wish to thank the former Director of INGV-Sezione di Catania, A. Bonaccorso, for making additional funds available for field trip and datings.
    Description: In press
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli ; flank fissures ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Lava flow spreading along the flanks of Etna volcano often produces damages to the land and proprieties. The impact of these eruptions could be mitigated by building artificial barriers for controlling and slowing down the lava, as recently experienced in 1983, 1991–1993, 2001 and 2002. This study investigates how numerical simulations can be adopted for evaluating the effectiveness of barrier construction and for optimizing their geometry, considering as test case the lava flows emplaced on Etna's south flank during 2001. The flow temporal evolutions were reconstructed deriving the effusion rate trends, together with the pre-eruption topography were adopted as input data of the MAGFLOW simulation code. Three simulations were then conducted to simulate lava flow with and without barriers. The first aimed at verifying the reconstruction of the effusion rate trends, while the others at assessing the performance of the barrier system realized during the eruption in comparison with an alternative solution here proposed. A quantitative analysis carried out on the first simulation confirms the suitability of the selected test case. The comparison of the three simulated thickness distributions showed both the effectiveness of the barriers in slowing down the lava flow and the sensitivity of the MAGFLOW code to the topographical variations represented by the barriers. Finally, for reducing both the time necessary to erect the barrier and the barrier environmental impact, the gabion's barrier construction was analyzed. The implemented and tested procedure enforces the capability of using numerical simulations for designing optimized lava flow barriers aimed at making swifter mitigatory actions upon lava flows and improving the effectiveness of civil protection interventions during emergencies.
    Description: Published
    Description: 16-26
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: lava flow ; mitigation action ; volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © The Authors 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Biogeochemistry 99 (2010): 1-13, doi:10.1007/s10533-009-9392-y.
    Description: Human activities have profoundly altered the global nitrogen (N) cycle. Increases in anthropogenic N have had multiple effects on the atmosphere, on terrestrial, freshwater and marine ecosystems, and even on human health. Unfortunately, methodological limitations challenge our ability to directly measure natural N inputs via biological N fixation (BNF)—the largest natural source of new N to ecosystems. This confounds efforts to quantify the extent of anthropogenic perturbation to the N cycle. To address this gap, we used a pair of indirect methods—analytical modeling and N balance—to generate independent estimates of BNF in a presumed hotspot of N fixation, a tropical rain forest site in central Rondônia in the Brazilian Amazon Basin. Our objectives were to attempt to constrain symbiotic N fixation rates in this site using indirect methods, and to assess strengths and weaknesses of this approach by looking for areas of convergence and disagreement between the estimates. This approach yielded two remarkably similar estimates of N fixation. However, when compared to a previously published bottom-up estimate, our analysis indicated much lower N inputs via symbiotic BNF in the Rondônia site than has been suggested for the tropics as a whole. This discrepancy may reflect errors associated with extrapolating bottom-up fluxes from plot-scale measures, those resulting from the indirect analyses, and/or the relatively low abundance of legumes at the Rondônia site. While indirect methods have some limitations, we suggest that until the technological challenges of directly measuring N fixation are overcome, integrated approaches that employ a combination of model-generated and empirically-derived data offer a promising way of constraining N inputs via BNF in natural ecosystems.
    Description: We acknowledge and are grateful for financial support from the Andrew W. Mellon Foundation (C.C. and B.H.), the National Science Foundation (NSF DEB-0515744 to C.C. and A.T. and DEB-0315656 to C.N.), and the NASA LBA Program (NCC5-285 to C.N.).
    Keywords: Amazon Basin ; Ecosystem modeling ; Mass balance ; Nitrogen fixation ; Nutrient cycling ; Rondonia ; Tropical forest
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Permanent Scatterers Synthetic Aperture Radar Interferometry (PSInSAR) and Global Position System (GPS) are applied to investigate the most recent surface deformation of the Campi Flegrei caldera. The PSInSAR analysis, based on SAR data acquired by ERS-1/2 sensors during the 1992–2001 time interval and by the Radarsat sensor during 2003–2007, identifies displacement patterns over wide areas with high spatial resolution. GPS data acquired by the Neapolitan Volcanic Continuous GPS network provide detailed ground velocity information of specific sites. The satellite-derived data allow us to characterize the deformation pattern that affected the Campi Flegrei caldera during two recent subsidence (1992–1999) and uplift (2005– 2006) phases. PSInSAR results show the re-activation of the caldera ring-faults, intra-caldera faults, and eruptive fissures. We discuss the results in the light of the available volcanological, structural and geophysical data and propose a relationship between the structures activated during the recent unrest episodes and those responsible for the recent (b3.8–4 ka) volcanism. The combined interpretation of the collected data show that (a) the caldera consists of two sectors separated by a N–S striking faulting zone and (b) the intra-caldera NW–SE faults and eruptive fissures in the central-eastern sector re-activated during the studied unrest episodes and represent possible pathways for the ascent of magma and/or gas to the surface. In this sector, maximum horizontal strain, recent volcanism (3.8–4 ka), active degassing and seismicity concentrate. The fault re-activation is related to the dynamics of the caldera and not to tectonic stress. The deformation fields of the uplift and subsidence episodes are consistent with hydrothermal processes and degassing from a magmatic reservoir that is significantly smaller than the large (∼40 km3) magma chamber responsible for the caldera formation. We provide evidence that the monitoring of the horizontal and vertical components of deformation improves the identification of active, aseismic faults. Accordingly, we suggest that future ground deformation models should include the re-activation of the detected structures.
    Description: This study has been supported by the TELLUS project (Telerilevamento Laboratori Unità di Supporto), which has been developed in the framework of the PODIS project (Progetto Operativo Difesa Suolo) of the Ministero dell'Ambiente e per la Tutela del Territorio e del Mare,and has been funded by the European Union QCS 2000–2006 PONATAS, by INGV-Osservatorio Vesuviano, and by 'Creep' IYPE-UNESCO project.
    Description: Published
    Description: 2373-2383
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 5.5. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: restricted
    Keywords: PSInSAR ; Fault re-activation ; Campi Flegrei ; Caldera ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...