ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism  (5)
  • 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
  • Chemistry
  • United States
  • AGU  (5)
  • 2005-2009  (5)
  • 2009  (5)
Collection
  • Articles  (5)
Keywords
Years
  • 2005-2009  (5)
Year
  • 1
    Publication Date: 2021-05-17
    Description: At least two transient events of extreme global warming occurred superimposed on the long-term latest Paleocene and early Eocene warming trend in the Paleocene-Eocene thermal maximum (PETM) (or ETM1 ~55.5 Ma) and the Elmo (or ETM2 ~53.6 Ma). Other than warmth, the best known PETM is characterized by (1) significant injection of 13C-depleted carbon into the ocean-atmosphere system, (2) deep-sea carbonate dissolution, (3) strong biotic responses, and (4) perturbations of the hydrological cycle. Documentation of the other documented and suspected "hyperthermals" is, as yet, insufficient to assess whether they are similar in nature to the PETM. Here we present and discuss biomagnetostratigraphic data and geochemical records across two lower Eocene successions deposited on a continental margin of the western Tethys: the Farra and Possagno sections in the Venetian pre-Alps. We recognize four negative carbon isotope excursions within chron C24. Three of these shifts correlate to known or suspected hyperthermals: the PETM, the Eocene thermal maximum 2 (~53.6 Ma), and the informally named "X event" (~52.5 Ma). The fourth excursion lies within a reverse subchron and occurred between the latter two. In the Farra section, the X event is marked by a ~0.6% negative carbon isotope excursion and carbonate dissolution. Furthermore, the event exhibits responses among calcareous nannofossils, planktic foraminifera, and dinoflagellates that are similar to, though less intense than, those observed across the PETM. Sedimentological and quantitative micropaleontological data from the Farra section also suggest increased weathering and runoff as well as sea surface eutrophication during this event.
    Description: Published
    Description: PA2209
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Paleoclimate ; Hyperthermal events ; Early Eocene ; Bio-magnetostratigraphy ; Geochemistry ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-25
    Description: The Antarctic Geological Drilling (ANDRILL) program — a collaboration between Germany, Italy, New Zealand, and the United States that is one of the larger programs endorsed by the International Polar Year (IPY; http:// www .ipy .org) — successfully completed the drilling phase of the Southern McMurdo Sound (SMS) Project in December 2007. This second drill core of the program’s campaign in the western Ross Sea, Antarctica, complements the results of the first drilling season [Naish et al., 2007] by penetrating deeper into the stratigraphic section in the Victoria Land Basin and extending the recovered time interval back to approximately 20 million years ago.
    Description: Published
    Description: 89-90
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: N/A or not JCR
    Description: reserved
    Keywords: ANDRILL ; SMS Project ; MMCO (Middle Miocene Climatic Optimum) ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We report new paleomagnetic and structural data from late Cretaceous to Mio-Pliocene continental sandy/silty sedimentary rocks from the Eastern Cordillera (central Andes). Here, N–S to NNE–SSW ridges hosting Paleozoic basement and upper Cretaceous continental red beds overthrust thick adjacent Cenozoic basins. Pretilting (and likely primary) reliable directions gathered at 15 sites document 45.9° ± 9.4, 30.1° ± 23.9°, and 15.4° ± 19.3° clockwise (CW) rotations with respect to South America occurring after the late Cretaceous (~80 Ma), Oligo-Miocene (20–30 Ma), and late Miocene-Pliocene (5–10 Ma), respectively. Conversely, four upper Cretaceous sites from the walls of a N–S left-lateral strike-slip fault (Yavi–Abra Pampa fault) yield a null rotation. About 20 km to the west, flower structures and subvertical syntectonic strata dated at 14.26 ± 0.19 Ma are exposed along the subparallel Abra Moreta left-lateral strike-slip fault. Relying on data from the literature on the period when deformation began, we suggest that since Eo-Oligocene times (30–40 Ma) the Eastern Cordillera has undergone a regional CW rotation of 40°–50°, synchronous with crustal shortening and large-scale bending of the Andean salient. The CW rotation is possibly still active today, as documented by regional GPS data from the Andes. Since ~15 Ma ago, the activity of N–S left-lateral strike-slip faults induced counterclockwise rotations along the fault zone, locally annulling the regional CW rotation. In agreement with a previous model, we speculate that mid-Miocene strike-slip activity accommodated the progressive southward spreading of the Altiplano-Puna high-altitude plateau, laterally migrating from the overthickened crustal region of the salient apex.
    Description: Published
    Description: TC4006
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Eastern Cordillera ; strike-slip tectonics ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The Middle Eocene Climatic Optimum (MECO) is an enigmatic warming event that represents an abrupt reversal in long-term cooling through the Eocene. In order to further assess the timing and nature of this event, we have assembled stable isotope and calcium carbonate concentration records from multiple Deep Sea Drilling Project and Ocean Drilling Program sites for the time interval between ~43 and 38 Ma. Revised stratigraphy at several sites and compilation of δ18O records place peak warming during the MECO event at 40.0 Ma (Chron C18n.2n). The identification of the δ18O excursion at sites in different geographic regions indicates that the climatic effects of this event were globally extensive. The total duration of the MECO event is estimated at ~500 kyr, with peak warming lasting 〈100 kyr. Assuming minimal glaciation in the late middle Eocene, ~4 to 6ºC total warming of both surface and deep waters is estimated during the MECO at the study sites. Maximum warming at ~40.0 Ma also coincided with a world-wide decline in carbonate accumulation at sites below 3000 m depth, reflecting a temporary shoaling of the calcite compensation depth. The synchroneity of deep-water acidification and globally extensive warming makes a persuasive argument that the MECO event was linked to a transient increase in atmospheric pCO2. The results of this study confirm previous reports of significant climatic instability during the middle Eocene. Furthermore, the direct link between warming and changes in the carbonate chemistry of the deep ocean provides strong evidence that changes in greenhouse gas concentrations exerted a primary control on short-term climate variability during this critical period of Eocene climate evolution.
    Description: Published
    Description: PA2207
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: partially_open
    Keywords: ODP ; Eocene ; stable isotope ; abrupt/rapid climate change ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: A scientific debate has developed in the last few years as to whether a 130 m diameter sag pond surrounded by a saddle-shaped rim and neighboring smaller sags from the Sirente Plain (Abruzzi, Italy) represent the only known Italian meteoritic crater field, a mud volcano, or an anthropogenic feature. To decipher the nature of the Sirente landforms, we carried out geophysical and geochemical investigations. Geoelectric profiles document two karstified shelf carbonate ridges lying at 10–40 m depth below calcareous lacustrine silts (and deeper more conductive sediments, likely soils/tephra) filling the plain. The smaller sags lie just above the ridges, implying a karstic origin, whereas the main sag (also resting above a carbonate ridge) shows no roots in excess of 10–20 m depth, in contrast to the "crater" interpretation. High-resolution magnetic surveys reveal negative/positive anomaly stripes in correspondence with the buried ridges/ valleys, respectively. The smaller sags, as well as the main crater are located in the domain of negative residuals. The positive long-wavelength magnetic signature is likely due to the strongly susceptive soils/tephra filling the buried valleys. Magnetic modeling shows that the field observed over the crater is incompatible with the field generated by a buried meteorite with realistic characteristics. The smaller sags are characterized by small magnetic anomaly couplets, perfectly reproducible considering the susceptibility contrast between the fill-in soil and the surrounding silts. Our data show that the Sirente crater and the minor depressions are simply the results of human activity and karstic processes, respectively.
    Description: Published
    Description: B03103
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Sirente ; Abruzzi ; meteoritic craters ; magnetic anomalies ; geoelectric profiles ; magnetic modeling ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...