ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data
  • Other Sources  (18)
  • Inter Research  (18)
  • 2005-2009  (18)
  • 1950-1954
  • 2009  (18)
  • 1
    Publication Date: 2018-06-01
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Effects of elevated temperature on the formation and subsequent degradation of diatom aggregates were studied in a laboratory experiment with a natural plankton community from the Kiel Fjord (Baltic Sea). Aggregates were derived from diatom blooms that developed in indoor mesocosms at 2.5 and 8.5 degrees C, corresponding to the 1993 to 2002 mean winter in situ temperature of the Western Baltic Sea and the projected sea surface temperature during winter in 2100, respectively. Formation and degradation of diatom aggregates at these 2 temperatures in the dark were promoted with roller tanks over a period of 11 d. Comparison of the 2 temperature settings revealed an enhanced aggregation potential of diatom cells at elevated temperature, which was likely induced by an increased concentration of transparent exopolymer particles (TEP). The enhanced aggregation potential led to a significantly higher proportion of particulate organic matter in aggregates at 8.5 degrees C. Moreover, the elevated temperature favoured the growth of bacteria, bacterial biomass production, and the activities of sugar- and protein-degrading extracellular enzymes in aggregates. Stimulating effects of rising temperature on growth and metabolism of the bacterial community resulted in an earlier onset of aggregate degradation and silica dissolution. Remineralization of carbon in aggregates at elevated temperature was partially compensated by the formation of carbon-rich TEP during dark incubation. Hence, our results suggest that increasing temperature will affect both formation and degradation of diatom aggregates. We conclude that the vertical export of organic matter through aggregates may change in the future, depending on the magnitude and vertical depth penetration of warming in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 376 .
    Publication Date: 2018-06-01
    Description: Models of multiple potentially limiting nutrients currently employ either multiplicative or threshold formulations, neither of which has a sound mechanistic explanation. Despite experimental evidence that lack of P severely constrains N assimilation, this mechanism has not been considered for constructing models of multi-nutrient limitation. We construct a phytoplankton optimal growth model linking C, chlorophyll (Chl), N, and P through a limitation chain in which P limits N assimilation, N limits photosynthesis and photosynthesis limits growth. The resulting formulation possesses characteristics of both multiplicative and threshold approaches and provides a mechanistic foundation for modelling multi-nutrient and light limitation of phytoplankton growth. The model compares well with experimental observations for a variety of unicellular phytoplankton species. It is suggested that the widely held view that N and P limitation act independently of each other is based on an invalid interpretation of experimental observations and that the transition from N to P limitation occurs over a wide range of colimitation rather than a sharply-defined transition point. If the species considered in this study are representative for marine phytoplankton, our model results indicate that most phytoplankton are colimited by N and P when inorganic N and P are simultaneously exhausted in the surface ocean. The model suggests that the close match between marine inorganic (Redfield) and phytoplankton N:P ratios results from optimal nutrient utilisation but does not indicate optimality of Redfield N:P.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-01
    Description: Generalist and opportunistic marine predators use flexible foraging behaviour to exploit prey bases that change in diversity and spatial and temporal distributions, Behavioural flexibility is constrained by characteristics Such as individual cognitive and physical capabilities, age, reproductive condition and central place foraging. To assess flexibility in the foraging tactics of a marine bird, we investigated the diets and foraging behaviour of the largest seabird predator in the North Atlantic Ocean. Northern gannets Sula bassana exploit abroad spectrum of pelagic prey that range in mass by more than 2 orders of magnitude, We investigated their foraging activity at their largest. offshore colony in the western Atlantic Ocean during 1998 to 2002, when they preyed primarily on shoals of spawning and post-spawning capelin Mallotus villosus, a small forage fish (similar to 15 g), and also on a much larger pelagic fish, post-smolt Atlantic salmon Salmo salar (similar to 200 g). Inter-annual dietary variation is associated with gannet and prey fish distributions. Landings of capelin at the colony by gannets were correlated with returns of larger foraging flocks from inshore, whereas landings of Atlantic salmon were associated with smaller flocks returning from offshore. Maximum foraging trip distances ranged from 20 to 200 km and averaged 57 +/- 12 (SE) km, consistent with distances to inshore capelin aggregations. When capelin abundance was low (in 2002), more gannets foraged offshore, preyed on large pelagic fishes (mostly Atlantic salmon) and exhibited the greatest dietary diversity. Though the Outbound portions of foraging trips were more sinuous than inbound routes, individual gannets exhibited general fidelity to foraging sites. These large avian predators used flexible foraging tactics to adjust to changing prey conditions and generate longer-term strategies to Lake advantage of diverse trophic interactions over a range of ocean ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 391 . pp. 257-265.
    Publication Date: 2018-06-01
    Description: Individual migratory schedules and wintering areas of northern gannets Morus bassanus were studied over 2 consecutive winters by deploying geolocation data loggers on breeding adults from the Bass Rock, UK. Northern gannets attended the breeding colony on Bass Rock until between 24 September and 16 October (median: 5 October). Afterwards, individual birds engaged in different migratory behaviour. Of the 22 birds tracked until at least December, 18% wintered in the North Sea and the English Channel, 27% in the Bay of Biscay and the Celtic Sea, 9% in the Mediterranean Sea and 45% off West Africa. Individual winter home ranges as measured by the 75% kernel density contours varied between 8 100 and 308 500 km(2) (mean = 134 000 km(2)). Several northern gannets migrated northwards from Bass Rock after leaving the colony for a stay of a few days to a few weeks, independent of whether they migrated to Africa or other southern areas later. Birds wintering off West Africa migrated to their wintering areas mostly within 3 to 5 wk, usually starting between early and late October. Most of these birds stayed off West Africa for a period of about 3 mo, where they remained in a relatively restricted area. Return migration was initiated between the end of January and mid-February, and took about as long as autumn migration. We conclude that individual gannets display very variable migratory behaviours, with discrete winter home ranges, and we infer that the migration habits of gannets may be changing in response to human impacts on marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-01
    Description: We examined the influence of both season and hydrographic and meteorological factors on seabird abundance in the southern North Sea. Seabirds were counted from ships in a study area of 27.8 x 32.8 km on 407 d from 1990 to 2007. Two hydrographic and 5 meteorological parameters were taken from archived data. The relationships between bird abundance and abiotic parameters were investigated by generalised additive models for 3 distinct seasons. The species in the study area exhibited different seasonal patterns. While some species were present year-round, others occurred only at certain periods. Despite these substantial changes in abundances, the nature of the interactions between bird abundances and abiotic parameters did not vary much between seasons. All 5 meteorological and 2 hydrographic parameters significantly influenced the abundance of seabird species, though to a different degree. The single factors that most often had a significant influence in the single models were wind field, sea surface temperature anomaly, sea surface salinity anomaly and air pressure change. The quantitative composition of the seabird community differed significantly between onshore wind and offshore wind conditions. It is assumed that hydrographic parameters are relevant for the birds by determining their foraging habitats and that atmospheric parameters influence flight conditions during foraging and migration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 380 . pp. 33-41.
    Publication Date: 2018-06-01
    Description: Ecological stoichiometry can be a powerful tool to understand food web consequences of altered biogeochemical cycles as well as consequences of biodiversity loss on biogeochemistry and has proved to be a suitable framework to predict effects of consumers on the nutrient content of their prey. However, predictions from ecological stoichiometry have mainly been tested using single consumer species, whereas in most natural ecosystems several consumer species coexist. We conducted 2 outdoor mesocosm experiments with marine rock pool communities to test whether species richness and species combination of benthic invertebrates affected the nutrient content of periphyton. We independently manipulated 12 different consumer combinations ranging from 0 to 6 (2004) or 0 to 4 (2005) grazer species and measured the biomass and nutrient content of the algae. Grazers included 3 gastropods and 3 crustaceans. In 2005, we additionally analyzed animal nutrient content and N excretion rate. Algal biomass and C:N ratios decreased in the presence of grazers in both years, indicating that the remaining algae had higher internal N content. Also, both biomass (2004 and 2005) and C:N ratios (only 2004) decreased even further when grazer richness increased. In 2004, significant net diversity effects of grazer richness on periphyton C:N ratios indicated that periphyton N content under multispecies grazing could not be predicted from the effect of single species. In 2005, significant net diversity effects on C:N ratios were rare, but periphyton C:N ratios consistently decreased with increasing grazer excretion rate, indicating that higher nitrogen regeneration by grazers led to higher N incorporation by algae. The effects of species richness were mainly affected by the presence of one efficient grazer, the gastropod Littorina littorea. Our experiments indicate that non-additive intraguild interactions may qualitatively alter the stoichiometric effects of multispecies consumer assemblages.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-01
    Description: It is widely assumed that the production of secondary metabolites against grazing and fouling is costly for seaweeds in terms of metabolic energy and should therefore be reduced under conditions of resource limitation. Here we tested the hypothesis that anti-herbivore defenses and bioactivity against mussels in 4 brown seaweeds from northern-central Chile will be reduced when light is limited. In a 2 wk experiment, seaweeds were kept under different low-light conditions (~76 to 99% reduction of ambient sunlight) and grazing situations. Subsequently, we tested their anti-herbivore defense against a common amphipod grazer in feeding assays with living algal tissue and reconstituted food pellets. A standard test employing the production of byssus threads by mussels was furthermore used as an indicator for deterrents in crude algal extracts. All investigated seaweeds showed decreased growth under the stepwise light reduction. Lessonia nigrescens exhibited reduced defense ability under severe low-light conditions when living tissue was offered to the amphipod, probably caused by changes in the tissue structure or in nutritional traits. In Dictyota kunthii, L. trabeculata and Macrocystis integrifolia this effect was absent. None of the investigated seaweeds showed a clear effect of light reduction on chemically mediated defenses against the mesograzer and there was no effect of light limitation on the bioactivity against mussels. Thus, against general assumptions, chemical defense in the investigated seaweeds does not appear to be reduced under severe resource limitation. Results suggest that seaweeds may use different strategies of energy allocation to cope with low-light conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-01
    Description: We describe an integrated database on European macrobenthic fauna, developed within the framework of the European Network of Excellence MarBEF, and the data and data integration exercise that provided its content. A total of 44 datasets including 465354 distribution records from soft-bottom macrobenthic species were uploaded into the relational MacroBen database, corresponding to 22897 sampled stations from all European seas, and 7203 valid taxa. All taxonomic names were linked to the European Register of Marine Species, which was used as the taxonomic reference to standardise spelling and harmonise synonymy. An interface was created, allowing the user to explore, subselect, export and analyse the data by calculating different indices. Although the sampling techniques and intended use of the datasets varied tremendously, the integrated database proved to be robust, and an important tool for studying and understanding large-scale long-term distributions and abundances of marine benthic life. Crucial in the process was the willingness and the positive data-sharing attitude of the different data contributors. Development of a data policy that is highly aware of sensitivities and ownership issues of data providers was essential in the creation of this goodwill.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-03
    Description: Deep-sea whale falls create sulfidic habits Supporting chemoautotrophic communities, but microbial processes underlying the formation Of Such habitats remain poorly evaluated. Microbial degradation processes (sulfate reduction, methanogenesis) and biogeochemical gradients were studied in a whale-fall habitat created by a 30 t whale carcass deployed at 1675 m depth for 6 to 7 yr on the California margin. A variety of measurements were conducted including photomosaicking, microsensor measurements, radio-tracer incubations and geochemical analyses. Sediments were Studied at different distances (0 to 9 in) from the whale fall. Highest microbial activities and steepest vertical geochemical gradients were found within 0.5 m of the whale fall, revealing ex situ sulfate reduction and in vitro methanogenesis rates of up to 717 and 99 mmol m(-2) d(-1), respectively. In sediments containing whale biomass, methanogenesis was equivalent to 20 to 30%, of sulfate reduction. During in vitro sediment studies, sulfide and methane were produced within days to weeks after addition of whale biomass, indicating that chemosynthesis is promoted at early stages of the whale fall. Total sulfide production from sediments within 0.5 m of the whale fall was 2.1 +/- 3 and 1.5 +/- 2.1 mol d(-1) in Years 6 and 7, respectively, of which similar to 200 mmol d(-1) were available as free sulfide. Sulfate reduction in bones was much lower, accounting for a total availability of similar to 10 mmol sulfide d(-1). Over periods of at least 7 yr, whale falls can create sulfidic conditions similar to other chemosynthetic habitats Such as cold seeps and hydrothermal vents.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-01
    Description: Latitudinal clines in species diversity in limnic and terrestrial habitats have been noted for well over a century and are consistent across many taxonomic groups. However, studies in marine systems over the past 2 to 3 decades have yielded equivocal results. We conducted initial analyses of the MarBEF (EU Network of Excellence for Marine Biodiversity and Ecosystem Function) database to test for trends in local and regional diversity over the latitudinal extent of European continental-shelf waters (36° to 81°N). Soft-sediment benthic macrofauna exhibit little evidence of a latitudinal cline in local (α-) diversity measures. Relationships with water depth were relatively strong and complex. Statistically significant latitudinal trends were small and positive, suggesting a modest increase in diversity with latitude once water-depth covariates were removed. These results are consistent regardless of whether subsets of the database were used, replicates were pooled, or component taxonomical groups were evaluated separately. Local and regional diversity measures were significantly and positively correlated. Scientific cooperation through data-sharing is a powerful tool with which to address fundamental ecological and evolutionary questions relating to large-scale patterns and processes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-01
    Description: This study examines whether or not biogeographical and/or managerial divisions across the European seas can be validated using soft-bottom macrobenthic community data. The faunal groups used were: all macrobenthos groups, polychaetes, molluscs, crustaceans, echinoderms, sipunculans and the last 5 groups combined. In order to test the discriminating power of these groups, 3 criteria were used: (1) proximity, which refers to the expected closer faunal resemblance of adjacent areas relative to more distant ones; (2) randomness, which in the present context is a measure of the degree to which the inventories of the various sectors, provinces or regions may in each case be considered as a random sample of the inventory of the next largest province or region in a hierarchy of geographic scales; and (3) differentiation, which provides a measure of the uniqueness of the pattern. Results show that only polychaetes fulfill all 3 criteria and that the only marine biogeographic system supported by the analyses is the one proposed by Longhurst (1998). Energy fluxes and other interactions between the planktonic and benthic domains, acting over evolutionary time scales, can be associated with the multivariate pattern derived from the macrobenthos datasets. Third-stage multidimensional scaling ordination reveals that polychaetes produce a unique pattern when all systems are under consideration. Average island distance from the nearest coast, number of islands and the island surface area were the geographic variables best correlated with the community patterns produced by polychaetes. Biogeographic patterns suggest a vicariance model dominating over the founder-dispersal model except for the semi-closed regional seas, where a model substantially modified from the second option could be supported.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-01
    Description: Submarine mud volcanism represents an important. pathway for methane from deeper reservoirs to the surface, where it enters the benthic carbon cycle. To quantify overall methane release from the Captain Arutyunov mud volcano (CAMV) and to assess the contribution of macrobenthic seep organisms to the regulation of the benthic methane flux, we linked water column methane concentrations, seabed methane emission and pore water geochemistry to the spatial distribution of seep biota. Prominent organisms of the CAMV seep biota were 3 different species of frenulate tubeworms. Seabed methane emission ranged from 0.001 to 0.66 mmol m(-2) d(-1). Dense patches of tubeworms were associated with the lowest seabed methane emission. Elevated methane emission was associated with a sporadic distribution of tubeworms and the occurrence of numerous mud clasts. Despite the presence of a large subsurface methane reservoir, the estimated total methane release from CAMV was low (0.006 x 10(6) mol yr(-1)). In addition to direct methane consumption by Siboglinum poseidoni, the tubeworms likely contribute to the retention of methane carbon in the sediment by affecting bacterial communities in the proximity of the tubes. The siboglinids create new meso-scale habitats on the sediment Surface, increasing habitat heterogeneity and introducing niches for bacterial communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-09-23
    Description: Epibacterial communities on thalli of the algal species Fucus serratus, Fucus vesiculosus, Laminaria saccharina, Ulva compressa, Delesseria sanguinea and Phycodrys rubens were analysed using 16S ribosomal RNA gene-based DGGE. Individuals of all species were collected in the Kiel Fjord (Baltic Sea) and in the rocky intertidal of Helgoland (North Sea). DGGE gels as well as cluster and multidimensional scaling analysis based on the DGGE band patterns of the epibacterial community showed significant differences between the epibacterial communities on the investigated algal species both in the Baltic and North Seas. Epibacterial communities differed less between regions than between host species, and were more similar on closely related host species. Results give the first evidence for lineage-specific bacterial associations to algal thalli. Furthermore, the results suggest that these algal species may control their epibiotic bacterial communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-08-10
    Description: The cirrate octopod Stauroteuthis syrtensis is a mesopelagic species commonly collected in the North Atlantic. Individuals were observed at depths 〉600 m and typically within 100 m of the bottom in three ~900 m deep canyons indenting the southern edge of Georges Bank. When first sighted, most octopods were floating passively with their webbed arms gathered into a small ball. When disturbed, they expanded their webs to form a ‘balloon’ shape, swam slowly by sculling their fins, pulsed their webs like medusae and, in some cases, streamlined their arms and webs and moved away smoothly by rapidly sculling their fins. The bodies of 9 octopods comprised 92 to 95% water, with tissue containing 9 to 22% carbon (C) and 2 to 4% nitrogen (N). These values were similar to those reported for medusae and ctenophores. Oxygen (O2) consumption rates of 4.6 to 25.8 µmol O2 g–1 C h–1 were within ranges reported for medusae, ctenophores, and deep-water cephalopods. The stomachs of S. syrtensis, dissected immediately after capture, contained only the calanoid copepod Calanus finmarchicus. Calculations indicated that S. syrtensis need 1.3 to 30.1 ind. d–1 of C. finmarchicus to meet their measured metabolic demand. Excretion rates (0.3 to 12.4 µg NH4+ g–1 C h–1 and 0.06 to 4.83 µg PO43– g–1 C h–1) were at least an order of magnitude lower than rates reported for other octopods or gelatinous zooplankters. O:N ratios (11 to 366) suggested that S. syrtensis catabolized lipids, which may be supplied by C. finmarchicus. Vertical distribution, relatively torpid behavior and low metabolic rates characterized S. syrtensis as a benthopelagic and relatively passive predator on copepods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-08-13
    Description: The North Pacific Ocean population of the neon flying squid Ommastrephes bartramii, which undertakes seasonal north–south migrations, consists of autumn and winter–spring spawning cohorts. We examined life history differences between the 2 cohorts in relation to the oceanographic environment. The differences could be explained by seasonal north–south movements of the following 2 oceanographic zones: (1) the optimum spawning zone defined by sea surface temperatures; and (2) the food-rich zone defined by the position of the transition zone chlorophyll front (TZCF). The 2 cohorts use the food-rich zone in different phases of their life cycles. The spawning grounds for the autumn cohort occur within the subtropical frontal zone (STFZ), characterized by enhanced productivity in winter due to its proximity to the TZCF, whereas the spawning grounds for the winter–spring cohort occur within the subtropical domain, which is less productive. As the TZCF shifts northward in spring, the autumn cohort continues to occur in the productive area north of the TZCF, whereas the winter–spring cohort remains in the less productive area to the south until it migrates into productive waters north of the TZCF in the summer or autumn. Consequently, the autumn cohort grows faster than the winter–spring cohort during the first half of its life cycle, whereas the winter–spring cohort grows faster during the second half. This growth pattern may be responsible for differing migration patterns; males of the autumn cohort do not have to migrate given their early fast growth in the STFZ, whereas those of the winter–spring cohort must migrate to the food-rich subarctic frontal zone to compensate for their slow growth. These biological and ecological differences between the 2 cohorts suggest flexibility of their life history response to oceanographic environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-01
    Description: Highly stratified marine ecosystems with dynamic features such as fronts or clines in salinity, temperature, or oxygen concentration challenge an individual’s ability to select suitable living conditions. Ultimately, environmental heterogeneity organizes the spatial distributions of populations and hence the spatial structure of the ecosystem. Our aim here is to present a method to resolve small-scale distribution on an individual level, as needed for the behaviorally-based prediction of habitat choice and limits. We focused on the small-scale vertical distribution of cod Gadus morhua L. in the Bornholm Basin, central Baltic Sea, during spawning time in 2 years with different vertical thermohaline and oxygen stratifications. Individual cod were identified by echotracking of real-time in situ hydroacoustic distribution data. In order to resolve and identify hydrographic preferences and limits, ambient parameters including temperature, salinity, and oxygen concentration as well as expected egg-survival probability were individually allocated to each fish. The vertical distribution of hydroacoustically identified fish was compared to data simultaneously recorded by data storage tags attached to cod. The results showed a clear influence of ambient salinity and oxygen concentration on the distribution pattern and distributional limitation of cod during spawning time, and also consistency of data storage tag-derived distribution patterns with those based on individual echotracking. We therefore consider this method to be a useful tool to analyze individual behavior and its implications for the population’s spatial distribution in stratified environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-01
    Description: Phytoplankton supply the base of the marine food web and drive the biogeochemical cycles of carbon and nutrients. Over much of the ocean, their growth is limited by their uptake of nitrogen (as nitrate), which has most commonly been described by the hyperbolic Michaelis-Menten (MM) equation. However, the lack of a theory to explain variations in MM constants has hindered our ability to predict the response of marine ecosystems to changes in environmental conditions. The MM equation fits data from short-term experiments well, but does not agree with steady-state experiments over wide ranges of nutrient concentrations. In contrast, the recently developed optimal uptake kinetics (OU) does agree with the latter and can also describe the observed pattern of MM half-saturation constants from field. experiments. OU kinetics explains the observed pattern of N uptake as the result of a general physiological trade-off between nutrient uptake capacity and affinity. The existence of a general trade-off would imply a relatively high degree of predictability in the response of nutrient uptake to changing nutrient concentrations and thus provide a basis for predicting effects of climate change on marine ecosystems and biogeochemical cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...