ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data
  • Other Sources  (109)
  • Inter Research  (70)
  • Microbiology Society  (31)
  • Instituto de Ciencias del Mar - CSIC
  • 2005-2009  (109)
  • 1950-1954
Collection
  • Data
  • Other Sources  (109)
Source
Years
Year
  • 1
    Publication Date: 2017-06-27
    Description: The bacterial strain Gp_4_7.1T, isolated from the marine sponge Isops phlegraei collected at the Sula Ridge off the Norwegian coast, was characterized. The isolate was a motile spirillum that was monopolarly and monotrichously flagellated. It was aerobic, Gram-negative, oxidase-positive and catalase-negative. Optimal growth occurred between 20 and 30 °C, at pH 7–8 and with a salt concentration of 2–3 % (w/v). The isolate showed a relatively restricted nutritional profile. Substrate utilization tests were only positive for arabinose. Enzyme tests were positive for esterase lipase C8, lipase C14, leucine arylamidase and naphthol-AS-BI-phosphohydrolase. The strain was not able to reduce nitrate. The major cellular fatty acids were C16 : 1 ω7 and C16 : 0. The DNA G+C content was 62.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparison classified the strain as a member of the order Oceanospirillales in the class Gammaproteobacteria. Strain Gp_4_7.1T formed a distinct phyletic line with less than 94 % 16S rRNA gene sequence similarity to its closest relatives with validly published names. Based on the determined data, it is proposed that the strain represents a novel species in a new genus, Spongiispira norvegica gen. nov., sp. nov.; the type strain of Spongiispira norvegica is Gp_4_7.1T (=DSM 17749T =NCIMB 14401T).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-27
    Description: Particulate (POM) and dissolved organic matter (DOM) released by the cold water corals Lophelia pertusa (L.) and Madrepora oculata (L.) was collected, analysed and quantitatively compared to that released by warm water reef-building corals. Particulate nitrogen (PN) and particulate organic carbon (POC) release rates of L. pertusa were 0.14 ± 0.07 mg N m–2 h–1 and 1.43 ± 1.22 mg C m–2 h–1, respectively, which is in the lower range of POM release rates measured for warm water corals, while dissolved organic carbon (DOC) release was 47 ± 19 mg C m–2 h–1. The resulting high DOC:POC ratio indicates that most cold water coral-derived organic matter immediately dissolved in the water column. Cold water corals, similar to their warm water counterparts, produced large amounts of nitrogen-rich coral mucus with C:N ratios of 5 to 7 for Lophelia- and 7 to 9 for Madrepora-derived mucus. A 7-fold increase in the oxygen consumption rates in cold water coral mucus-amended seawater containing the natural microbial assemblage indicates that this organic matter provided an attractive food source for pelagic microbes. In situ investigations at Røst Reef, Norway, showed that microbial activity in the seawater closest to the reef was 10 times higher than in the overlying water column. This suggests that cold water corals can stimulate microbial activity in the direct reef vicinity by the release of easily degradable and nutrient-rich organic matter, which may thereby function as a vector for carbon and nutrient cycling via the microbial loop in cold water coral reef systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-27
    Description: Strain HAL40bT was isolated from the marine sponge Haliclona sp. 1 collected at the Sula Ridge off the Norwegian coast and characterized by physiological, biochemical and phylogenetic analyses. The isolate was a small rod with a polar flagellum. It was aerobic, Gram-negative and oxidase- and catalase-positive. Optimal growth was observed at 20–30 °C, pH 7–9 and in 3 % NaCl. Substrate utilization tests were positive for arabinose, Tween 40 and Tween 80. Enzyme tests were positive for alkaline phosphatase, esterase lipase (C8), leucine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase and N-acetyl-β-glucosaminidase. The predominant cellular fatty acid was C17 : 1 ω8, followed by C17 : 0 and C18 : 1 ω7. Analysis by matrix-assisted laser desorption/ionization time-of-flight MS was used to characterize the strain, producing a characteristic low-molecular-mass protein pattern that could be used as a fingerprint for identification of members of this species. The DNA G+C content was 69.1 mol%. Phylogenetic analysis supported by 16S rRNA gene sequence comparison classified the strain as a member of the class Gammaproteobacteria. Strain HAL40bT was only distantly related to other marine bacteria including Neptunomonas naphthovorans and Marinobacter daepoensis (type strain sequence similarity 〉90 %). Based on its phenotypic, physiological and phylogenetic characteristics, it is proposed that the strain should be placed into a new genus as a representative of a novel species, Spongiibacter marinus gen. nov., sp. nov.; the type strain of Spongiibacter marinus is HAL40bT (=DSM 17750T =CCUG 54896T).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-01
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Effects of elevated temperature on the formation and subsequent degradation of diatom aggregates were studied in a laboratory experiment with a natural plankton community from the Kiel Fjord (Baltic Sea). Aggregates were derived from diatom blooms that developed in indoor mesocosms at 2.5 and 8.5 degrees C, corresponding to the 1993 to 2002 mean winter in situ temperature of the Western Baltic Sea and the projected sea surface temperature during winter in 2100, respectively. Formation and degradation of diatom aggregates at these 2 temperatures in the dark were promoted with roller tanks over a period of 11 d. Comparison of the 2 temperature settings revealed an enhanced aggregation potential of diatom cells at elevated temperature, which was likely induced by an increased concentration of transparent exopolymer particles (TEP). The enhanced aggregation potential led to a significantly higher proportion of particulate organic matter in aggregates at 8.5 degrees C. Moreover, the elevated temperature favoured the growth of bacteria, bacterial biomass production, and the activities of sugar- and protein-degrading extracellular enzymes in aggregates. Stimulating effects of rising temperature on growth and metabolism of the bacterial community resulted in an earlier onset of aggregate degradation and silica dissolution. Remineralization of carbon in aggregates at elevated temperature was partially compensated by the formation of carbon-rich TEP during dark incubation. Hence, our results suggest that increasing temperature will affect both formation and degradation of diatom aggregates. We conclude that the vertical export of organic matter through aggregates may change in the future, depending on the magnitude and vertical depth penetration of warming in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 376 .
    Publication Date: 2018-06-01
    Description: Models of multiple potentially limiting nutrients currently employ either multiplicative or threshold formulations, neither of which has a sound mechanistic explanation. Despite experimental evidence that lack of P severely constrains N assimilation, this mechanism has not been considered for constructing models of multi-nutrient limitation. We construct a phytoplankton optimal growth model linking C, chlorophyll (Chl), N, and P through a limitation chain in which P limits N assimilation, N limits photosynthesis and photosynthesis limits growth. The resulting formulation possesses characteristics of both multiplicative and threshold approaches and provides a mechanistic foundation for modelling multi-nutrient and light limitation of phytoplankton growth. The model compares well with experimental observations for a variety of unicellular phytoplankton species. It is suggested that the widely held view that N and P limitation act independently of each other is based on an invalid interpretation of experimental observations and that the transition from N to P limitation occurs over a wide range of colimitation rather than a sharply-defined transition point. If the species considered in this study are representative for marine phytoplankton, our model results indicate that most phytoplankton are colimited by N and P when inorganic N and P are simultaneously exhausted in the surface ocean. The model suggests that the close match between marine inorganic (Redfield) and phytoplankton N:P ratios results from optimal nutrient utilisation but does not indicate optimality of Redfield N:P.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-09-06
    Description: The recent introduction of Gracilaria vermiculophylla (Rhodophyta) to the Kiel Fjord area was a reason for concern, since this red macroalga performs best under mesohaline conditions and thus appears well adapted to thrive and spread in the Baltic Sea environment, A systematic survey on a coastal range of 500 km in 2006 and 2007 indicated considerable Multiplication and spreading of G. vermiculophylla within Kiel Fjord, but provided little evidence of long-distance transport. Nonetheless, flow-through growth experiments conducted at a range of salinities under ambient light showed that G. vermiculophylla should be able to grow in most of the Baltic Sea. Growth declined only below a salinity of 5.5. High water temperatures in summer seem to reduce resistance against low salinity. Growth of G, vermiculophylla in the SW Baltic is limited by light and is only possible during summer and above a depth of 3 m. Drifting fragments are dispersed by currents. Either they sink to deeper waters, where they degrade, or they accumulate in shallow and sheltered waters, where they form perennial mats. These overgrow not only soft bottom sediments, but also stones, which are an important habitat to Fucus vesiculosus, the main native perennial alga in the Baltic Sea. As compared to F. vesiculosus, G. vermiculophylla seems to represent a preferred refuge for mesograzers and other invertebrates, particularly in winter. Nonetheless, feeding trials showed that potential grazers avoided G. vermiculophylla relative to F vesiculosus. Daily biomass uptake by grazers associated with G. vermiculophylla in nature did not exceed 2 g kg(-1) and is 〈11% of average daily net growth (18.5 g kg(-1)) in the first 2 m below sea level. Consequently, feeding may not be sufficient to control the spread of G. vermiculophylla in the SW Baltic. Our study suggests that absence of feeding enemies and adaptation to brackish water may allow G. vermiculophylla to invade most shallow coastal waters of the inner Baltic Sea despite light limitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 373 . pp. 303-309.
    Publication Date: 2019-09-23
    Description: Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures of carbon dioxide (pCO(2)). During a 6 wk period, juvenile S. officinalis maintained calcification under similar to 4000 and similar to 6000 ppm CO2, and grew at the same rate with the same gross growth efficiency as did control animals. They gained approximately 4%, body mass daily and increased the mass of their calcified cuttlebone by over 500 %. We conclude that active cephalopods possess a certain level of pre-adaptation to long-term increments in carbon dioxide levels. Our general understanding of the mechanistic processes that limit calcification must improve before we can begin to predict what effects future ocean acidification will have on calcifying marine invertebrates.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-01
    Description: Generalist and opportunistic marine predators use flexible foraging behaviour to exploit prey bases that change in diversity and spatial and temporal distributions, Behavioural flexibility is constrained by characteristics Such as individual cognitive and physical capabilities, age, reproductive condition and central place foraging. To assess flexibility in the foraging tactics of a marine bird, we investigated the diets and foraging behaviour of the largest seabird predator in the North Atlantic Ocean. Northern gannets Sula bassana exploit abroad spectrum of pelagic prey that range in mass by more than 2 orders of magnitude, We investigated their foraging activity at their largest. offshore colony in the western Atlantic Ocean during 1998 to 2002, when they preyed primarily on shoals of spawning and post-spawning capelin Mallotus villosus, a small forage fish (similar to 15 g), and also on a much larger pelagic fish, post-smolt Atlantic salmon Salmo salar (similar to 200 g). Inter-annual dietary variation is associated with gannet and prey fish distributions. Landings of capelin at the colony by gannets were correlated with returns of larger foraging flocks from inshore, whereas landings of Atlantic salmon were associated with smaller flocks returning from offshore. Maximum foraging trip distances ranged from 20 to 200 km and averaged 57 +/- 12 (SE) km, consistent with distances to inshore capelin aggregations. When capelin abundance was low (in 2002), more gannets foraged offshore, preyed on large pelagic fishes (mostly Atlantic salmon) and exhibited the greatest dietary diversity. Though the Outbound portions of foraging trips were more sinuous than inbound routes, individual gannets exhibited general fidelity to foraging sites. These large avian predators used flexible foraging tactics to adjust to changing prey conditions and generate longer-term strategies to Lake advantage of diverse trophic interactions over a range of ocean ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 391 . pp. 257-265.
    Publication Date: 2018-06-01
    Description: Individual migratory schedules and wintering areas of northern gannets Morus bassanus were studied over 2 consecutive winters by deploying geolocation data loggers on breeding adults from the Bass Rock, UK. Northern gannets attended the breeding colony on Bass Rock until between 24 September and 16 October (median: 5 October). Afterwards, individual birds engaged in different migratory behaviour. Of the 22 birds tracked until at least December, 18% wintered in the North Sea and the English Channel, 27% in the Bay of Biscay and the Celtic Sea, 9% in the Mediterranean Sea and 45% off West Africa. Individual winter home ranges as measured by the 75% kernel density contours varied between 8 100 and 308 500 km(2) (mean = 134 000 km(2)). Several northern gannets migrated northwards from Bass Rock after leaving the colony for a stay of a few days to a few weeks, independent of whether they migrated to Africa or other southern areas later. Birds wintering off West Africa migrated to their wintering areas mostly within 3 to 5 wk, usually starting between early and late October. Most of these birds stayed off West Africa for a period of about 3 mo, where they remained in a relatively restricted area. Return migration was initiated between the end of January and mid-February, and took about as long as autumn migration. We conclude that individual gannets display very variable migratory behaviours, with discrete winter home ranges, and we infer that the migration habits of gannets may be changing in response to human impacts on marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...