ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (34)
  • Inter Research  (18)
  • Hoboken, USA  (16)
  • 2020-2023  (16)
  • 2005-2009  (18)
  • 1950-1954
  • 2022  (16)
  • 2020
  • 2009  (18)
  • 1
    Publication Date: 2022-06-26
    Description: The two small research catchments Obere Brachtpe (2.6 km2; 50.989986, 7.752013) and Bohlmicke (1 km2, 51.079319, 7.892988) are located in the Rhenish Massif, a low mountain range in Germany. Land use in both catchments is dominated by pasture land, spruce stands and mixed forests. Mean annual temperature is 9.1°C, and mean annual total precipitation is 1250 mm, with 15%–20% of the annual precipitation falling as snow. The geology is characterized by sandy silty clay shale from the Lower and Middle Devonian. Loamy Cambisols derived from periglacial slope deposits, complemented by Leptosols and Stagnosols, are the most prominent soils in the catchments. Long‐term hydrological datasets of precipitation, throughfall, discharge, groundwater levels and soil moisture (at different soil depths) in a high temporal and spatial resolution are available for further scientific analysis. Both catchments were monitored within the time period 1999 and 2009, in order to understand how the antecedent soil moisture, stratified soils (periglacial cover beds) and topography (slope form) impacted the subsurface connectivity, and the subsurface stormflow generation ‐ a dominant runoff generation process in humid mountainous catchments. Detailed physically based investigations on runoff processes were carried out, and the obtained results helped to better understand subsurface stormflow generation and subsurface connectivity dynamics. The process knowledge gained, which was presented at several conferences, as well as publications, was the basis for the discussion of open questions within the scientific network ‘Subsurface Stormflow ‐ A well‐recognized, but still challenging process in Catchment Hydrology’ (2016–2021), and the research unit ‘Fast and invisible: conquering subsurface stormflow through an interdisciplinary multisite approach’ (2022–2025), both financed by the German Research Foundation (DFG).
    Description: Long‐term hydrological datasets of precipitation, throughfall, discharge, groundwater levels and soil moisture (at different soil depths) in a high temporal and spatial resolution are available of the two small catchments Obere Brachtpe (2.6 km²) and Bohlmicke (1 km²) (Germany). Both catchments have been monitored in order to understand how the antecedent soil moisture, stratified soils (periglacial cover beds) and topography (slope form) impacted the subsurface connectivity and the subsurface stormflow generation in humid mountainous catchments.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.48
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-28
    Description: Statistical and climate models are frequently used for biodiversity projections under future climatic changes, but their predictive capacity for freshwater plankton may vary among different species and community metrics. Here, we used random forests to model plankton species and community metrics as a function of biological, climatic, physical, and chemical data from long‐term (2000–2017) monitoring data collected from Lake Müggelsee Berlin, Germany. We (1) compared the predictability of well‐known lake plankton metric types (biomass, abundance, taxonomic diversity, Shannon diversity, Simpson diversity, evenness, taxonomic distinctness, and taxonomic richness) and (2) assessed how the relative influence of different environmental drivers varies across lake plankton metric models. Overall, the metric predictability was highest for biomass and abundance followed by taxonomic richness. The biomass of dominant phytoplankton taxonomic groups such as cyanobacteria (adjusted‐R2 = 0.53) and the abundance of dominant zooplankton taxonomic groups such as rotifers (adjusted‐R2 = 0.59) and daphnids (adjusted‐R2 = 0.51) were more predictable than other metric types. The plankton metric predictability increased when grouping phytoplankton species according to their functional traits (adjusted‐R2 = 0.37 ± 0.14, mean ± SD, n = 36 functional groups) compared to higher taxonomic units (adjusted‐R2 = 0.25 ± 0.15, n = 22 taxonomic groups). Light, nutrients, water temperature, and seasonality for phytoplankton and food resources for zooplankton were the main drivers of both taxonomic and functional groups, giving confidence that our models captured the expected major environmental drivers. Our quantitative analyses highlight the multidimensionality of lake planktonic responses to environmental drivers and have implications for our capacity to select appropriate metrics for forecasting the future of lake ecosystems under global change scenarios.
    Description: European Union's Horizon 2020 Research and Innovation Programme
    Description: Belmont Forum
    Description: BiodivERsA
    Description: LimnoSCenES
    Keywords: ddc:579.17
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-08
    Description: Many lake ecosystems that have been severely disturbed by eutrophication, have also experienced large human efforts to restore “natural” conditions. However, the trajectories and the extent of recovery of these lake ecosystems are still poorly understood. In many shallow lakes, recovery was often delayed and counter‐clockwise hysteretic. Here, we study recovery and ecosystem trajectories in a large and deep lake using diatom remains in sediment cores and time series of phosphorus concentrations. We identified four periods of diatom community change: slow change during early eutrophication, thereafter a short period of rapid change after the 1950s, followed by community stability from the 1960s to the mid‐1980s, and finally a recovery phase until 2010. Diatom community structure responded quickly and in a saturating way to increasing phosphorus concentrations, but also fast to phosphorus decline. Hence, diatom community dynamics did not show counter‐clockwise hysteresis but was characterized by a high degree of recovery and clock‐wise hysteresis (CWH). We suggest that CWH in response to eutrophication and recovery is a typical and previously overlooked feature of deep lakes, which results from a more rapid change of average nutrient concentrations and thus productivity in the epilimnion compared to average nutrient concentrations across the entire water column. Such nonlinear and hysteretic responses to changing nutrients need to be considered when analyzing the effects of other stressors such as climate warming on ecosystem dynamics to prevent erroneous attribution of ecosystem change to other stressors instead of nutrient change.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: European Regional Development Fund http://dx.doi.org/10.13039/501100008530
    Keywords: ddc:577.63
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    John Wiley & Sons, Inc. | Hoboken, USA
    Publication Date: 2022-08-05
    Description: In‐depth understanding of the potential implications of climate change is required to guide decision‐ and policy‐makers when developing adaptation strategies and designing infrastructure suitable for future conditions. Impact models that translate potential future climate conditions into variables of interest are needed to create the causal connection between a changing climate and its impact for different sectors. Recent surveys suggest that the primary strategy for validating such models (and hence for justifying their use) heavily relies on assessing the accuracy of model simulations by comparing them against historical observations. We argue that such a comparison is necessary and valuable, but not sufficient to achieve a comprehensive evaluation of climate change impact models. We believe that a complementary, largely observation‐independent, step of model evaluation is needed to ensure more transparency of model behavior and greater robustness of scenario‐based analyses. This step should address the following four questions: (1) Do modeled dominant process controls match our system perception? (2) Is my model's sensitivity to changing forcing as expected? (3) Do modeled decision levers show adequate influence? (4) Can we attribute uncertainty sources throughout the projection horizon? We believe that global sensitivity analysis, with its ability to investigate a model's response to joint variations of multiple inputs in a structured way, offers a coherent approach to address all four questions comprehensively. Such additional model evaluation would strengthen stakeholder confidence in model projections and, therefore, into the adaptation strategies derived with the help of impact models.
    Description: A comprehensive evaluation of climate change impact models combining both observation‐based and response‐based strategies.
    Description: This article is categorized under: Climate Models and Modeling 〉 Knowledge Generation with Models Assessing Impacts of Climate Change 〉 Evaluating Future Impacts of Climate Change
    Description: Alexander von Humboldt‐Stiftung http://dx.doi.org/10.13039/100005156
    Description: Engineering and Physical Sciences Research Council http://dx.doi.org/10.13039/501100000266
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-01
    Description: Bacteria play a key role in sustaining the chemodiversity of marine dissolved organic matter (DOM), yet there is limited direct evidence of a major contribution of bacterial exometabolites to the DOM pool. This study tests whether molecular formulae of intact exometabolites can be detected in natural DOM via untargeted Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR‐MS). We analyzed a series of quantitative mixtures of solid‐phase extracted DOM from the deep ocean, of a natural microbial community and selected model strains of marine bacteria. Under standard instrument settings (200 broadband scans, mass range 92–1000 Da), 77% of molecular formulae were shared between the mesocosm and marine DOM. However, there was 〈 10% overlap between pure bacterial exometabolome with marine DOM, and in mixing ratios closest to mimicking natural environments (1% bacterial DOM, 99% marine DOM), only 4% of the unique bacterial exometabolites remained detectable. Further experiments with the bacterial exometabolome DOM mixtures using enhanced instrument settings resulted in increased detection of the exometabolites at low concentrations. At 1000 and 10,000 accumulated scans, 23% and 29% of the unique molecular formulae were detectable at low concentrations, respectively. Moreover, windowing a specific mass range encompassing a representative fraction of exometabolites tripled the number of unique detected formulae at low concentrations. Routine FT‐ICR‐MS settings are thus not always sufficient to distinguish bacterial exometabolome patterns from a seawater DOM background. To observe these patterns at higher sensitivity, we recommend a high scan number coupled with windowing a characteristic region of the molecular fingerprint.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.46 ; ddc:579.3 ; ddc:
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-04
    Description: The latest version of the Soil and Water Assessment Tool (SWAT+) features several improvements compared with previous versions of the model, for example, the definition of landscape units that allow for a better representation of spatio‐temporal dynamics. To evaluate the new model capabilities in lowland catchments characterized by near‐surface groundwater tables and extensive tile drainage, we assess the performance of two SWAT+ model setups in comparison to a setup based on a previous SWAT model version (SWAT3S with a modified three groundwater storage model) in the Kielstau catchment in Northern Germany. The Kielstau catchment has an area of about 50 km2, is dominated by agricultural land use, and has been thoroughly monitored since 2005. In both SWAT+ setups, the catchment is divided into upland areas and floodplains, but in the first SWAT+ model setup, runoff from the hydrologic response units is summed up at landscape unit level and added directly to the stream. In the second SWAT+ model setup, runoff is routed across the landscape before it reaches the streams. Model results are compared with regard to (i) model performance for stream flow at the outlet of the catchment and (ii) aggregated as well as temporally and spatially distributed water balance components. All three model setups show a very good performance at the catchment outlet. In comparison to a previous version of the SWAT model that produced more groundwater flow, the SWAT+ model produced more tile drainage flow and surface runoff. Results from the new SWAT+ model confirm that the representation of routing processes from uplands to floodplains in the model further improved the representation of hydrological processes. Particularly, the stronger spatial heterogeneity that can be related to characteristics of the landscape, is very promising for a better understanding and model representation of hydrological fluxes in lowland areas. The outcomes of this study are expected to further prove the applicability of SWAT+ and provide useful information for future model development.
    Description: The model performance of all three model setups was very good, but the SWAT+ model setup with runoff routing between landscape units performed best. Moreover, the SWAT+ model applications predicted a greater spatial heterogeneity of the water balance components. The representation of hydrological fluxes particularly with regard to groundwater flow, surface runoff, and tile drainage flow differed considerably between the SWAT and SWAT+ model setups.
    Keywords: ddc:551.48
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-04
    Description: Pelagic bacteria can be classified into free‐living and particle‐attached life modes, which either dwell in the water column or attach to suspended particles. Bacteria with a generalist life style, however, can actively shift between these two habitats. Globally increasing densities of natural and artificial particles enhance habitat heterogeneity, with potential consequences for system stability and trophic transfer through aquatic food webs. To better decipher the dynamics of microbial communities, we investigated the influence of adaptive vs. fixed habitat choice on species coexistence for a simplified bacterial community by analyzing a corresponding food web model, consisting of two specialist bacterial prey species (free and attached), a generalist bacterial prey species with the ability to shift between both habitats, and two protist predators, specialized on either water or particle compartment. For simplicity we assume a shared resource pool, considering particles only for colonization but not as a source for nutrients or carbon, that is, inert particles like microplastics or inorganic sediments. The model predicts coexistence on a cyclic attractor between fixed and flexible bacteria, if the costs for adaptive habitat choice can be balanced by adaptation speed. The presence of adaptive prey dampens predator–prey cycle amplitudes, contributing to system stabilization resulting in higher mean predator biomass compared to specialist prey only. Thus, in pelagic microbial systems, flexible habitat choice at the prey level has important implications for system stability and magnitude of energy flow through the microbial loop.
    Description: German Ministry of Education and Science
    Description: German Science Foundation (DFG)
    Keywords: ddc:579.3
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-04
    Description: Greenhouse gas fluxes (CO2, CH4, and N2O) from African streams and rivers are under‐represented in global datasets, resulting in uncertainties in their contributions to regional and global budgets. We conducted year‐long sampling of 59 sites in a nested‐catchment design in the Mara River, Kenya in which fluxes were quantified and their underlying controls assessed. We estimated annual basin‐scale greenhouse gas emissions from measured in‐stream gas concentrations, modeled gas transfer velocities, and determined the sensitivity of up‐scaling to discharge. Based on the total annual CO2‐equivalent emissions calculated from global warming potentials (GWP), the Mara basin was a net greenhouse gas source (294 ± 35 Gg CO2 eq yr−1). Lower‐order streams (1–3) contributed 81% of the total fluxes, and higher stream orders (4–8) contributed 19%. Cropland‐draining streams also exhibited higher fluxes compared to forested streams. Seasonality in stream discharge affected stream widths (and stream area) and gas exchange rates, strongly influencing the basin‐wide annual flux, which was 10 times higher during the high and medium discharge periods than the low discharge period. The basin‐wide estimate was underestimated by up to 36% if discharge was ignored, and up to 37% for lower stream orders. Future research should therefore include seasonality in stream surface areas in upscaling procedures to better constrain basin‐wide fluxes. Given that agricultural activities are a major factor increasing riverine greenhouse gas fluxes in the study region, increased conversion of forests and agricultural intensification has the possibility of increasing the contribution of the African continent to global greenhouse gas sources.
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Description: IHE Delft Institute for Water Education
    Description: Federal Ministry of Education and Research http://dx.doi.org/10.13039/501100002347
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: TERENO Bavarian Alps/ Pre‐Alps Observatory
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    John Wiley & Sons, Inc. | Hoboken, USA
    Publication Date: 2022-10-05
    Description: How will the theories and practices of democracy fare in a climate changing world? Are conventional democratic institutions ultimately doomed or are they able to become more responsive to a changing climate? Is there a need to reimagine democracy and how might it be reimagined? This article reviews the different responses to these questions by distinguishing between three “political imaginaries” in which the relationship between climate change and democracy takes distinct forms. I start by showing how the concept of “political imaginaries” can facilitate the comparison of the different ways in which the relation between democracy and climate change is constructed, before reviewing three such imaginaries. The skeptical imaginary, found in the “eco‐authoritarianism” of the 1970s that is echoed by much sociopolitical analysis today, casts doubt on the possibilities of democratic mechanisms to respond adequately and swiftly to the problem of climate change. Those who resist such skepticism often defend democracy by arguing that institutions and processes of democracy can be made more “ecologically rational”—the rational imaginary of climate democracy involves improvements in political representation and participation. Finally, I present the alternative radical democratic imaginary, in which the crisis of climate change provides a moment for the rupture of existing sociopolitical structures and the formation of alternatives. The article concludes that although none of these imaginaries is able to capture the entirety of climate change politics around the world, the radical democratic imaginary is responsive to the inevitable and valuable plurality around the issue of climate change. This article is categorized under: Climate, Nature, and Ethics 〉 Ethics and Climate Change Policy and Governance 〉 Multilevel and Transnational Climate Change Governance
    Description: Climate protests may mobilise new political subjects.
    Keywords: ddc:363.70561
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-06
    Description: In recent years, the issue of high groundwater levels has caught attention. Unfavorable consequences of high groundwater levels are especially damage to buildings, infrastructure, and the environment. Processes that lead to high groundwater levels are hydrological (heavy or extended rainfall and flood events), or anthropogenic (reduced groundwater extractions, interaction with sewer networks, hydraulic engineering measures, structural interventions in the water balance, and mining activities). Several different map products have been prepared for the information of inhabitants and for planning purposes, and also methods for damage and risk analysis related to high groundwater levels have been developed. Groundwater management measures and structural measures are available to reduce the risk related to high groundwater levels. An operational management system could be combined from existing components, but operational forecasting systems for high groundwater levels are—different to flood forecasting systems—not yet common practice. A better understanding of the processes and the development of integrated approaches for modeling, design, planning, forecasting, and warning, as well as improvement of interdisciplinary collaboration between different organizations, are recommendations for the future. This article is categorized under: Engineering Water 〉 Engineering Water Water and Life 〉 Conservation, Management, and Awareness Science of Water 〉 Hydrological Processes Science of Water 〉 Water Extremes
    Description: Pumping water from a basement during the Neiße flood 2010 in Saxony. The clear water indicates that the basement flooding originates from groundwater (photo: Reinhard Schinke).
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-09-25
    Description: The Ghohroud granitoids (GG), containing mafic microgranular enclaves (MMEs) are located in the central part of the Urumieh‐Dokhtar Magmatic Arc (UDMA) in central Iran. They are associated with the subduction‐related magmatism in the Alpine‐Himalayan orogenic belt. The GG are comprised of a variety of intermediate and felsic rocks, including tonalite, granodiorite, granite, diorite porphyry and monzodiorite. The MMEs are gabbroic diorite and tonalite in composition and characterized by a fine‐grained hypidiomorphic microgranular texture with occasional chilled margins. They show rounded, sharp or irregular contact with the host granitoids. The occurrences of quartz, K‐feldspar and corroded plagioclase indicate that MMEs are the products of mixing between mantle and crust‐derived magmas. New ages of zircon U–Pb dating reveal that the GG in the Kashan area emplaced at ca. 19–17 Ma (Burdigalian). All the samples of MMEs and granitoid host rocks in this study are metaluminous and calc‐alkaline with I‐type affinities. They are enriched in light rare earth elements (LREEs) and show slight negative Eu anomalies (Eu/Eu* = 0.36–0.95). These features in a combination with the relative depletion in Nb, Ta, Ti and P, indicate the granitoids and MMEs are closely associated with subduction‐related magmas at an active continental margin. The host rocks yield relatively homogeneous isotopic compositions of initial 87Sr/86Sr ratios ranging from 0.706036 to 0.707055, εNd(t) values varying from −2.25 to 0.8, and the Nd model ages (TDM) vary in a limited range of 0.70–0.96 Ga. The MMEs show similar initial 87Sr/86Sr ratios (0.706420–0.707366), εNd(t) values (−1.32 to −0.27), TDM (0.68–1.09 Ga) and Pb isotopic compositions with host granitoids, which imply they attained isotopic equilibration during magma mingling and mixing. In combination with the petrographic, chemical and isotopic results, we suggest that the origin of MMEs and their host rocks were related to the interaction between crust‐derived melts and mantle‐derived mafic magmas. The magma‐mixing event possibly occurred during the transition from subduction to collision in the UDMA along with the closure of the Neotethyan ocean.
    Description: A comprehensive dataset from petrographic characteristics to geochemical compositions of the mafic microgranular enclaves and granitoid host rocks from the Urumieh–Dokhtar Magmatic Arc (Iran) was presented. The new data provide significant insight into the evolution of magmatism in this area, which was tightly related to the Neotethyan closure. image
    Description: National Nature Science Foundation of China
    Description: TMU Research Grant Council
    Keywords: ddc:552.3
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-09-22
    Description: Arctic and alpine aquatic ecosystems are changing rapidly under recent global warming, threatening water resources by diminishing trophic status and changing biotic composition. Macrophytes play a key role in the ecology of freshwaters and we need to improve our understanding of long‐term macrophytes diversity and environmental change so far limited by the sporadic presence of macrofossils in sediments. In our study, we applied metabarcoding using the trnL P6 loop marker to retrieve macrophyte richness and composition from 179 surface‐sediment samples from arctic Siberian and alpine Chinese lakes and three representative lake cores. The surface‐sediment dataset suggests that macrophyte richness and composition are mostly affected by temperature and conductivity, with highest richness when mean July temperatures are higher than 12°C and conductivity ranges between 40 and 400 μS cm−1. Compositional turnover during the Late Pleistocene/Holocene is minor in Siberian cores and characterized by a less rich, but stable emergent macrophyte community. Richness decreases during the Last Glacial Maximum and rises during wetter and warmer climate in the Late‐glacial and Mid‐Holocene. In contrast, we detect a pronounced change from emergent to submerged taxa at 14 ka in the Tibetan alpine core, which can be explained by increasing temperature and conductivity due to glacial runoff and evaporation. Our study provides evidence for the suitability of the trnL marker to recover modern and past macrophyte diversity and its applicability for the response of macrophyte diversity to lake‐hydrochemical and climate variability predicting contrasting macrophyte changes in arctic and alpine lakes under intensified warming and human impact.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: Second Tibetan Plateau Scientific Expedition and Research Program
    Description: https://doi.pangaea.de/10.1594/PANGAEA.920866
    Description: https://doi.org/10.5061/dryad.k6djh9w4r
    Keywords: ddc:577.63
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-06-17
    Description: Urban green space is increasingly viewed as essential infrastructure to build resilience to climate change by retaining water in the city landscape and balancing ecohydrological partitioning into evapotranspiration for cooling and groundwater recharge. Quantifying how different vegetation types affect water partitioning is essential for future management, but paucity of data and the complex heterogeneity of urban areas make water balance estimates challenging. Here, we provide a preliminary assessment of water partitioning from different sized patches of trees and grass as well as from sealed surfaces. To do this, we used limited field observations together with an advanced, process‐based tracer‐aided ecohydrological model at a meso‐scale (5 km2) in central Berlin, Germany. Transpiration was the dominant green water flux accounting for over 50% of evapotranspiration in the modelled area. Green water fluxes were in general greater from trees compared with grass, but grass in large parks transpired more water compared with grass in small parks that were intensively used for recreation. Interception evaporation was larger for trees compared with grass, but soil water evaporation was greater for grass compared with trees. We also show that evapotranspiration from tree‐covered areas comprise almost 80% of the total evapotranspiration from the whole model domain while making up less than 30% of the surface cover. The results form an important stepping‐stone towards further upscaling over larger areas and highlights the importance of continuous high‐resolution hydrological measurements in the urban landscape, as well as the need for improvements to ecohydrological models to capture important urban processes.
    Description: Berlin University Alliance / Einstein Stiftung Berlin, Climate and Water under Change
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Einstein Stiftung Berlin http://dx.doi.org/10.13039/501100006188
    Description: Leverhulme Trust http://dx.doi.org/10.13039/501100000275
    Description: Urban Climate Observatory (UCO) Berlin
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-08-09
    Description: Iron flocculants play a major role in the remediation of water bodies, removing particulate pollutants such as microplastics through floc formation. Such flocs are prone to microbial iron reduction while lying on top of anoxic sediments, which possibly leads the release of bound microplastics. In this study, Shewanella oneidensis was employed to simulate the impact of microbial iron reduction on the release of polyethylene spheres from sunken flocs in 120 d batch experiments. Most of the flocs iron (oxyhydr)oxides were reduced (70–90%), but this did not affect their integrity. Only a negligible proportion (0.2–2.7%) of polyethylene spheres was released, while the majority remained bound inside the floc matrix. This study exemplifies that flocs are quite stable, even when experiencing microbial iron reduction under anoxic conditions. Thereby incorporation into such aggregates may display a potential mode of long‐term microplastics storage in freshwater sediments.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://doi.org/10.48758/ufz.11330
    Keywords: ddc:363.73 ; ddc:551.303
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-12-07
    Description: The fluorophore [2‐(4‐pyridyl)‐5{[4‐dimethylaminoethyl‐aminocarbamoyl‐methoxy]phenyl}oxazole], in short PDMPO, is incorporated in newly polymerized silica in diatom frustules and thereby provides a tool to estimate Si uptake, study diatom cell cycles but also determine mortality‐independent abundance‐based species specific‐growth rates in cultures and natural assemblages. In this study, the theoretical framework and applicability of the PDMPO staining technique to estimate diatom species specific‐growth rates were investigated. Three common polar diatom species, Pseudo‐nitzschia subcurvata, Chaetoceros simplex, and Thalassiosira sp., chosen in order to cover a broad range of species specific frustule and life‐cycle characteristics, were incubated over 24 h in control (no PDMPO) and with 0.125 and 0.6 μM PDMPO addition, respectively. Results indicate that specific‐growth rates of the species tested were not affected in both treatments with PDMPO addition. The specific‐growth rate estimates based on the PDMPO staining patterns (μPDMPO) were comparable and more robust than growth rates estimated from the changes in cell concentrations (μcc). This technique also allowed to investigate and highlight the importance of the illumination cycle (light and dark phases) on cell division in diatoms.
    Keywords: ddc:579.8 ; diatom frustules ; Si uptake ; growth rate estimation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-11-01
    Description: The pelagic ecosystem of the Arctic Ocean is threatened by severe changes such as the reduction in sea‐ice coverage and increased inflow of warmer Atlantic water. The latter is already altering the zooplankton community, highlighting the need for monitoring studies. It is therefore essential to accelerate the taxonomic identification to speed up sample analysis, and to expand the analysis to biomass and size assessments, providing data for modeling efforts. Our case study in Fram Strait illustrates that image‐based analyses with the ZooScan provide abundance data and taxonomic resolutions that are comparable to microscopic analyses and are suitable for zooplankton monitoring purposes in the Arctic. We also show that image analysis allows to differentiate developmental stages of the key species Calanus spp. and Metridia longa and, thus, to study their population dynamics. Our results emphasize that older preserved samples can be successfully reanalyzed with ZooScan. To explore the applicability of image parameters for calculating total mesozooplankton and Calanus spp. biomasses, we used (1) conversion factors (CFs) translating wet mass to dry mass (DM), and (2) length–mass (LM) relationships. For Calanus spp., the calculated biomass values yielded similar results as direct DM measurements. Total mesozooplankton biomass ranged between 1.6 and 15 (LM) or 2.4 and 21 (CF) g DM m², respectively, which corresponds to previous studies in Fram Strait. Ultimately, a normalized biomass size spectra analysis provides 1st insights into the mesozooplankton size structure at different depths, revealing steep slopes in the linear fit in communities influenced by Atlantic water inflow.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:577.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-01
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-09-23
    Description: Effects of elevated temperature on the formation and subsequent degradation of diatom aggregates were studied in a laboratory experiment with a natural plankton community from the Kiel Fjord (Baltic Sea). Aggregates were derived from diatom blooms that developed in indoor mesocosms at 2.5 and 8.5 degrees C, corresponding to the 1993 to 2002 mean winter in situ temperature of the Western Baltic Sea and the projected sea surface temperature during winter in 2100, respectively. Formation and degradation of diatom aggregates at these 2 temperatures in the dark were promoted with roller tanks over a period of 11 d. Comparison of the 2 temperature settings revealed an enhanced aggregation potential of diatom cells at elevated temperature, which was likely induced by an increased concentration of transparent exopolymer particles (TEP). The enhanced aggregation potential led to a significantly higher proportion of particulate organic matter in aggregates at 8.5 degrees C. Moreover, the elevated temperature favoured the growth of bacteria, bacterial biomass production, and the activities of sugar- and protein-degrading extracellular enzymes in aggregates. Stimulating effects of rising temperature on growth and metabolism of the bacterial community resulted in an earlier onset of aggregate degradation and silica dissolution. Remineralization of carbon in aggregates at elevated temperature was partially compensated by the formation of carbon-rich TEP during dark incubation. Hence, our results suggest that increasing temperature will affect both formation and degradation of diatom aggregates. We conclude that the vertical export of organic matter through aggregates may change in the future, depending on the magnitude and vertical depth penetration of warming in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 376 .
    Publication Date: 2018-06-01
    Description: Models of multiple potentially limiting nutrients currently employ either multiplicative or threshold formulations, neither of which has a sound mechanistic explanation. Despite experimental evidence that lack of P severely constrains N assimilation, this mechanism has not been considered for constructing models of multi-nutrient limitation. We construct a phytoplankton optimal growth model linking C, chlorophyll (Chl), N, and P through a limitation chain in which P limits N assimilation, N limits photosynthesis and photosynthesis limits growth. The resulting formulation possesses characteristics of both multiplicative and threshold approaches and provides a mechanistic foundation for modelling multi-nutrient and light limitation of phytoplankton growth. The model compares well with experimental observations for a variety of unicellular phytoplankton species. It is suggested that the widely held view that N and P limitation act independently of each other is based on an invalid interpretation of experimental observations and that the transition from N to P limitation occurs over a wide range of colimitation rather than a sharply-defined transition point. If the species considered in this study are representative for marine phytoplankton, our model results indicate that most phytoplankton are colimited by N and P when inorganic N and P are simultaneously exhausted in the surface ocean. The model suggests that the close match between marine inorganic (Redfield) and phytoplankton N:P ratios results from optimal nutrient utilisation but does not indicate optimality of Redfield N:P.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-01
    Description: Generalist and opportunistic marine predators use flexible foraging behaviour to exploit prey bases that change in diversity and spatial and temporal distributions, Behavioural flexibility is constrained by characteristics Such as individual cognitive and physical capabilities, age, reproductive condition and central place foraging. To assess flexibility in the foraging tactics of a marine bird, we investigated the diets and foraging behaviour of the largest seabird predator in the North Atlantic Ocean. Northern gannets Sula bassana exploit abroad spectrum of pelagic prey that range in mass by more than 2 orders of magnitude, We investigated their foraging activity at their largest. offshore colony in the western Atlantic Ocean during 1998 to 2002, when they preyed primarily on shoals of spawning and post-spawning capelin Mallotus villosus, a small forage fish (similar to 15 g), and also on a much larger pelagic fish, post-smolt Atlantic salmon Salmo salar (similar to 200 g). Inter-annual dietary variation is associated with gannet and prey fish distributions. Landings of capelin at the colony by gannets were correlated with returns of larger foraging flocks from inshore, whereas landings of Atlantic salmon were associated with smaller flocks returning from offshore. Maximum foraging trip distances ranged from 20 to 200 km and averaged 57 +/- 12 (SE) km, consistent with distances to inshore capelin aggregations. When capelin abundance was low (in 2002), more gannets foraged offshore, preyed on large pelagic fishes (mostly Atlantic salmon) and exhibited the greatest dietary diversity. Though the Outbound portions of foraging trips were more sinuous than inbound routes, individual gannets exhibited general fidelity to foraging sites. These large avian predators used flexible foraging tactics to adjust to changing prey conditions and generate longer-term strategies to Lake advantage of diverse trophic interactions over a range of ocean ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 391 . pp. 257-265.
    Publication Date: 2018-06-01
    Description: Individual migratory schedules and wintering areas of northern gannets Morus bassanus were studied over 2 consecutive winters by deploying geolocation data loggers on breeding adults from the Bass Rock, UK. Northern gannets attended the breeding colony on Bass Rock until between 24 September and 16 October (median: 5 October). Afterwards, individual birds engaged in different migratory behaviour. Of the 22 birds tracked until at least December, 18% wintered in the North Sea and the English Channel, 27% in the Bay of Biscay and the Celtic Sea, 9% in the Mediterranean Sea and 45% off West Africa. Individual winter home ranges as measured by the 75% kernel density contours varied between 8 100 and 308 500 km(2) (mean = 134 000 km(2)). Several northern gannets migrated northwards from Bass Rock after leaving the colony for a stay of a few days to a few weeks, independent of whether they migrated to Africa or other southern areas later. Birds wintering off West Africa migrated to their wintering areas mostly within 3 to 5 wk, usually starting between early and late October. Most of these birds stayed off West Africa for a period of about 3 mo, where they remained in a relatively restricted area. Return migration was initiated between the end of January and mid-February, and took about as long as autumn migration. We conclude that individual gannets display very variable migratory behaviours, with discrete winter home ranges, and we infer that the migration habits of gannets may be changing in response to human impacts on marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-01
    Description: We examined the influence of both season and hydrographic and meteorological factors on seabird abundance in the southern North Sea. Seabirds were counted from ships in a study area of 27.8 x 32.8 km on 407 d from 1990 to 2007. Two hydrographic and 5 meteorological parameters were taken from archived data. The relationships between bird abundance and abiotic parameters were investigated by generalised additive models for 3 distinct seasons. The species in the study area exhibited different seasonal patterns. While some species were present year-round, others occurred only at certain periods. Despite these substantial changes in abundances, the nature of the interactions between bird abundances and abiotic parameters did not vary much between seasons. All 5 meteorological and 2 hydrographic parameters significantly influenced the abundance of seabird species, though to a different degree. The single factors that most often had a significant influence in the single models were wind field, sea surface temperature anomaly, sea surface salinity anomaly and air pressure change. The quantitative composition of the seabird community differed significantly between onshore wind and offshore wind conditions. It is assumed that hydrographic parameters are relevant for the birds by determining their foraging habitats and that atmospheric parameters influence flight conditions during foraging and migration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 380 . pp. 33-41.
    Publication Date: 2018-06-01
    Description: Ecological stoichiometry can be a powerful tool to understand food web consequences of altered biogeochemical cycles as well as consequences of biodiversity loss on biogeochemistry and has proved to be a suitable framework to predict effects of consumers on the nutrient content of their prey. However, predictions from ecological stoichiometry have mainly been tested using single consumer species, whereas in most natural ecosystems several consumer species coexist. We conducted 2 outdoor mesocosm experiments with marine rock pool communities to test whether species richness and species combination of benthic invertebrates affected the nutrient content of periphyton. We independently manipulated 12 different consumer combinations ranging from 0 to 6 (2004) or 0 to 4 (2005) grazer species and measured the biomass and nutrient content of the algae. Grazers included 3 gastropods and 3 crustaceans. In 2005, we additionally analyzed animal nutrient content and N excretion rate. Algal biomass and C:N ratios decreased in the presence of grazers in both years, indicating that the remaining algae had higher internal N content. Also, both biomass (2004 and 2005) and C:N ratios (only 2004) decreased even further when grazer richness increased. In 2004, significant net diversity effects of grazer richness on periphyton C:N ratios indicated that periphyton N content under multispecies grazing could not be predicted from the effect of single species. In 2005, significant net diversity effects on C:N ratios were rare, but periphyton C:N ratios consistently decreased with increasing grazer excretion rate, indicating that higher nitrogen regeneration by grazers led to higher N incorporation by algae. The effects of species richness were mainly affected by the presence of one efficient grazer, the gastropod Littorina littorea. Our experiments indicate that non-additive intraguild interactions may qualitatively alter the stoichiometric effects of multispecies consumer assemblages.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-01
    Description: It is widely assumed that the production of secondary metabolites against grazing and fouling is costly for seaweeds in terms of metabolic energy and should therefore be reduced under conditions of resource limitation. Here we tested the hypothesis that anti-herbivore defenses and bioactivity against mussels in 4 brown seaweeds from northern-central Chile will be reduced when light is limited. In a 2 wk experiment, seaweeds were kept under different low-light conditions (~76 to 99% reduction of ambient sunlight) and grazing situations. Subsequently, we tested their anti-herbivore defense against a common amphipod grazer in feeding assays with living algal tissue and reconstituted food pellets. A standard test employing the production of byssus threads by mussels was furthermore used as an indicator for deterrents in crude algal extracts. All investigated seaweeds showed decreased growth under the stepwise light reduction. Lessonia nigrescens exhibited reduced defense ability under severe low-light conditions when living tissue was offered to the amphipod, probably caused by changes in the tissue structure or in nutritional traits. In Dictyota kunthii, L. trabeculata and Macrocystis integrifolia this effect was absent. None of the investigated seaweeds showed a clear effect of light reduction on chemically mediated defenses against the mesograzer and there was no effect of light limitation on the bioactivity against mussels. Thus, against general assumptions, chemical defense in the investigated seaweeds does not appear to be reduced under severe resource limitation. Results suggest that seaweeds may use different strategies of energy allocation to cope with low-light conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-01
    Description: We describe an integrated database on European macrobenthic fauna, developed within the framework of the European Network of Excellence MarBEF, and the data and data integration exercise that provided its content. A total of 44 datasets including 465354 distribution records from soft-bottom macrobenthic species were uploaded into the relational MacroBen database, corresponding to 22897 sampled stations from all European seas, and 7203 valid taxa. All taxonomic names were linked to the European Register of Marine Species, which was used as the taxonomic reference to standardise spelling and harmonise synonymy. An interface was created, allowing the user to explore, subselect, export and analyse the data by calculating different indices. Although the sampling techniques and intended use of the datasets varied tremendously, the integrated database proved to be robust, and an important tool for studying and understanding large-scale long-term distributions and abundances of marine benthic life. Crucial in the process was the willingness and the positive data-sharing attitude of the different data contributors. Development of a data policy that is highly aware of sensitivities and ownership issues of data providers was essential in the creation of this goodwill.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-03
    Description: Deep-sea whale falls create sulfidic habits Supporting chemoautotrophic communities, but microbial processes underlying the formation Of Such habitats remain poorly evaluated. Microbial degradation processes (sulfate reduction, methanogenesis) and biogeochemical gradients were studied in a whale-fall habitat created by a 30 t whale carcass deployed at 1675 m depth for 6 to 7 yr on the California margin. A variety of measurements were conducted including photomosaicking, microsensor measurements, radio-tracer incubations and geochemical analyses. Sediments were Studied at different distances (0 to 9 in) from the whale fall. Highest microbial activities and steepest vertical geochemical gradients were found within 0.5 m of the whale fall, revealing ex situ sulfate reduction and in vitro methanogenesis rates of up to 717 and 99 mmol m(-2) d(-1), respectively. In sediments containing whale biomass, methanogenesis was equivalent to 20 to 30%, of sulfate reduction. During in vitro sediment studies, sulfide and methane were produced within days to weeks after addition of whale biomass, indicating that chemosynthesis is promoted at early stages of the whale fall. Total sulfide production from sediments within 0.5 m of the whale fall was 2.1 +/- 3 and 1.5 +/- 2.1 mol d(-1) in Years 6 and 7, respectively, of which similar to 200 mmol d(-1) were available as free sulfide. Sulfate reduction in bones was much lower, accounting for a total availability of similar to 10 mmol sulfide d(-1). Over periods of at least 7 yr, whale falls can create sulfidic conditions similar to other chemosynthetic habitats Such as cold seeps and hydrothermal vents.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-01
    Description: Latitudinal clines in species diversity in limnic and terrestrial habitats have been noted for well over a century and are consistent across many taxonomic groups. However, studies in marine systems over the past 2 to 3 decades have yielded equivocal results. We conducted initial analyses of the MarBEF (EU Network of Excellence for Marine Biodiversity and Ecosystem Function) database to test for trends in local and regional diversity over the latitudinal extent of European continental-shelf waters (36° to 81°N). Soft-sediment benthic macrofauna exhibit little evidence of a latitudinal cline in local (α-) diversity measures. Relationships with water depth were relatively strong and complex. Statistically significant latitudinal trends were small and positive, suggesting a modest increase in diversity with latitude once water-depth covariates were removed. These results are consistent regardless of whether subsets of the database were used, replicates were pooled, or component taxonomical groups were evaluated separately. Local and regional diversity measures were significantly and positively correlated. Scientific cooperation through data-sharing is a powerful tool with which to address fundamental ecological and evolutionary questions relating to large-scale patterns and processes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-01
    Description: This study examines whether or not biogeographical and/or managerial divisions across the European seas can be validated using soft-bottom macrobenthic community data. The faunal groups used were: all macrobenthos groups, polychaetes, molluscs, crustaceans, echinoderms, sipunculans and the last 5 groups combined. In order to test the discriminating power of these groups, 3 criteria were used: (1) proximity, which refers to the expected closer faunal resemblance of adjacent areas relative to more distant ones; (2) randomness, which in the present context is a measure of the degree to which the inventories of the various sectors, provinces or regions may in each case be considered as a random sample of the inventory of the next largest province or region in a hierarchy of geographic scales; and (3) differentiation, which provides a measure of the uniqueness of the pattern. Results show that only polychaetes fulfill all 3 criteria and that the only marine biogeographic system supported by the analyses is the one proposed by Longhurst (1998). Energy fluxes and other interactions between the planktonic and benthic domains, acting over evolutionary time scales, can be associated with the multivariate pattern derived from the macrobenthos datasets. Third-stage multidimensional scaling ordination reveals that polychaetes produce a unique pattern when all systems are under consideration. Average island distance from the nearest coast, number of islands and the island surface area were the geographic variables best correlated with the community patterns produced by polychaetes. Biogeographic patterns suggest a vicariance model dominating over the founder-dispersal model except for the semi-closed regional seas, where a model substantially modified from the second option could be supported.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-01
    Description: Submarine mud volcanism represents an important. pathway for methane from deeper reservoirs to the surface, where it enters the benthic carbon cycle. To quantify overall methane release from the Captain Arutyunov mud volcano (CAMV) and to assess the contribution of macrobenthic seep organisms to the regulation of the benthic methane flux, we linked water column methane concentrations, seabed methane emission and pore water geochemistry to the spatial distribution of seep biota. Prominent organisms of the CAMV seep biota were 3 different species of frenulate tubeworms. Seabed methane emission ranged from 0.001 to 0.66 mmol m(-2) d(-1). Dense patches of tubeworms were associated with the lowest seabed methane emission. Elevated methane emission was associated with a sporadic distribution of tubeworms and the occurrence of numerous mud clasts. Despite the presence of a large subsurface methane reservoir, the estimated total methane release from CAMV was low (0.006 x 10(6) mol yr(-1)). In addition to direct methane consumption by Siboglinum poseidoni, the tubeworms likely contribute to the retention of methane carbon in the sediment by affecting bacterial communities in the proximity of the tubes. The siboglinids create new meso-scale habitats on the sediment Surface, increasing habitat heterogeneity and introducing niches for bacterial communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-09-23
    Description: Epibacterial communities on thalli of the algal species Fucus serratus, Fucus vesiculosus, Laminaria saccharina, Ulva compressa, Delesseria sanguinea and Phycodrys rubens were analysed using 16S ribosomal RNA gene-based DGGE. Individuals of all species were collected in the Kiel Fjord (Baltic Sea) and in the rocky intertidal of Helgoland (North Sea). DGGE gels as well as cluster and multidimensional scaling analysis based on the DGGE band patterns of the epibacterial community showed significant differences between the epibacterial communities on the investigated algal species both in the Baltic and North Seas. Epibacterial communities differed less between regions than between host species, and were more similar on closely related host species. Results give the first evidence for lineage-specific bacterial associations to algal thalli. Furthermore, the results suggest that these algal species may control their epibiotic bacterial communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-08-10
    Description: The cirrate octopod Stauroteuthis syrtensis is a mesopelagic species commonly collected in the North Atlantic. Individuals were observed at depths 〉600 m and typically within 100 m of the bottom in three ~900 m deep canyons indenting the southern edge of Georges Bank. When first sighted, most octopods were floating passively with their webbed arms gathered into a small ball. When disturbed, they expanded their webs to form a ‘balloon’ shape, swam slowly by sculling their fins, pulsed their webs like medusae and, in some cases, streamlined their arms and webs and moved away smoothly by rapidly sculling their fins. The bodies of 9 octopods comprised 92 to 95% water, with tissue containing 9 to 22% carbon (C) and 2 to 4% nitrogen (N). These values were similar to those reported for medusae and ctenophores. Oxygen (O2) consumption rates of 4.6 to 25.8 µmol O2 g–1 C h–1 were within ranges reported for medusae, ctenophores, and deep-water cephalopods. The stomachs of S. syrtensis, dissected immediately after capture, contained only the calanoid copepod Calanus finmarchicus. Calculations indicated that S. syrtensis need 1.3 to 30.1 ind. d–1 of C. finmarchicus to meet their measured metabolic demand. Excretion rates (0.3 to 12.4 µg NH4+ g–1 C h–1 and 0.06 to 4.83 µg PO43– g–1 C h–1) were at least an order of magnitude lower than rates reported for other octopods or gelatinous zooplankters. O:N ratios (11 to 366) suggested that S. syrtensis catabolized lipids, which may be supplied by C. finmarchicus. Vertical distribution, relatively torpid behavior and low metabolic rates characterized S. syrtensis as a benthopelagic and relatively passive predator on copepods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-08-13
    Description: The North Pacific Ocean population of the neon flying squid Ommastrephes bartramii, which undertakes seasonal north–south migrations, consists of autumn and winter–spring spawning cohorts. We examined life history differences between the 2 cohorts in relation to the oceanographic environment. The differences could be explained by seasonal north–south movements of the following 2 oceanographic zones: (1) the optimum spawning zone defined by sea surface temperatures; and (2) the food-rich zone defined by the position of the transition zone chlorophyll front (TZCF). The 2 cohorts use the food-rich zone in different phases of their life cycles. The spawning grounds for the autumn cohort occur within the subtropical frontal zone (STFZ), characterized by enhanced productivity in winter due to its proximity to the TZCF, whereas the spawning grounds for the winter–spring cohort occur within the subtropical domain, which is less productive. As the TZCF shifts northward in spring, the autumn cohort continues to occur in the productive area north of the TZCF, whereas the winter–spring cohort remains in the less productive area to the south until it migrates into productive waters north of the TZCF in the summer or autumn. Consequently, the autumn cohort grows faster than the winter–spring cohort during the first half of its life cycle, whereas the winter–spring cohort grows faster during the second half. This growth pattern may be responsible for differing migration patterns; males of the autumn cohort do not have to migrate given their early fast growth in the STFZ, whereas those of the winter–spring cohort must migrate to the food-rich subarctic frontal zone to compensate for their slow growth. These biological and ecological differences between the 2 cohorts suggest flexibility of their life history response to oceanographic environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-01
    Description: Highly stratified marine ecosystems with dynamic features such as fronts or clines in salinity, temperature, or oxygen concentration challenge an individual’s ability to select suitable living conditions. Ultimately, environmental heterogeneity organizes the spatial distributions of populations and hence the spatial structure of the ecosystem. Our aim here is to present a method to resolve small-scale distribution on an individual level, as needed for the behaviorally-based prediction of habitat choice and limits. We focused on the small-scale vertical distribution of cod Gadus morhua L. in the Bornholm Basin, central Baltic Sea, during spawning time in 2 years with different vertical thermohaline and oxygen stratifications. Individual cod were identified by echotracking of real-time in situ hydroacoustic distribution data. In order to resolve and identify hydrographic preferences and limits, ambient parameters including temperature, salinity, and oxygen concentration as well as expected egg-survival probability were individually allocated to each fish. The vertical distribution of hydroacoustically identified fish was compared to data simultaneously recorded by data storage tags attached to cod. The results showed a clear influence of ambient salinity and oxygen concentration on the distribution pattern and distributional limitation of cod during spawning time, and also consistency of data storage tag-derived distribution patterns with those based on individual echotracking. We therefore consider this method to be a useful tool to analyze individual behavior and its implications for the population’s spatial distribution in stratified environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-01
    Description: Phytoplankton supply the base of the marine food web and drive the biogeochemical cycles of carbon and nutrients. Over much of the ocean, their growth is limited by their uptake of nitrogen (as nitrate), which has most commonly been described by the hyperbolic Michaelis-Menten (MM) equation. However, the lack of a theory to explain variations in MM constants has hindered our ability to predict the response of marine ecosystems to changes in environmental conditions. The MM equation fits data from short-term experiments well, but does not agree with steady-state experiments over wide ranges of nutrient concentrations. In contrast, the recently developed optimal uptake kinetics (OU) does agree with the latter and can also describe the observed pattern of MM half-saturation constants from field. experiments. OU kinetics explains the observed pattern of N uptake as the result of a general physiological trade-off between nutrient uptake capacity and affinity. The existence of a general trade-off would imply a relatively high degree of predictability in the response of nutrient uptake to changing nutrient concentrations and thus provide a basis for predicting effects of climate change on marine ecosystems and biogeochemical cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...