ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Salinity  (3)
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (2)
  • American Meteorological Society  (1)
  • MDPI Publishing
  • 2005-2009  (3)
  • 2008  (3)
  • 1
    Publication Date: 2017-04-04
    Description: In this paper results from the application of an ocean data assimilation (ODA) system, combining a multivariate reduced-order optimal interpolator (OI) scheme with a global ocean general circulation model (OGCM), are described. The present ODA system, designed to assimilate in situ temperature and salinity observations, has been used to produce ocean reanalyses for the 1962–2001 period. The impact of assimilating observed hydrographic data on the ocean mean state and temporal variability is evaluated. A special focus of this work is on the ODA system skill in reproducing a realistic ocean salinity state. Results from a hierarchy of different salinity reanalyses, using varying combinations of assimilated data and background error covariance structures, are described. The impact of the space and time resolution of the background error covariance parameterization on salinity is addressed.
    Description: This work has been funded by the ENACT Project (Contract EVK2-CT2001-00117) for A. Bellucci and P. Di Pietro, and partially by the ENSEMBLES Project (Contract GOCE-CT-2003-505539) for A. Bellucci.
    Description: Published
    Description: 3785-3807
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: ocean modelling ; data assimilation ; reanalysis ; upper ocean variability ; temperature ; Salinity ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2003
    Description: This thesis utilizes field data from the Fraser River Estuary, a highly stratified system located in southwestern British Columbia, Canada, to investigate the nature of mixing processes in a highly stratified environment, and to extend two-dimensional hydraulic theory to a three dimensional environment. During the late ebb, a stationary front exists at the Fraser mouth. Although densimetric Froude numbers in the vicinity of the front are supercritical in a frame of reference parallel to the local streamlines, the front itself is oriented such that the value of the Froude number is equal to the critical value of unity when taken in a frame of reference perpendicular to the front. This observation presents a robust extension of established two-dimensional, two-layer hydraulic theory to thee dimensions, and implies similarity with trans-sonic flows, in that a Froude angle can be used to identify critical conditions in a manner similar to the Mach angle. Mixing processes were evaluated at the mouth during the late ebb using a control volume approach to isolate mean vertical entrainment processes from turbulent processes, and quantify the vertical turbulent salt and momentum fluxes. Observed turbulent dissipation rates are high, on the order of 10-3 m2s.3, with vertical entrainment velocities on the order of 2x10-3 m's'l. Mixing efficiencies, expressed as flux Richardson numbers, are confined within a range from 0.15 to 0.2, at gradient Richardson number values between 0.2 and 0.25. These results are consistent with previous laboratory studies, but represent energetic conditions that are several orders of magnitude higher. In the estuarine channel, the variability of mixing processes was investigated through the tidal cycle using control volume and overturn scale methods. Spatially, mixing was observed to be more intense near a width constriction on the order of25%. Temporally, more dominant mixing was observed during ebbs, due to increases in both vertical shear and stratification. Mixing is active and important throughout the tidal cycle, and was found to be the dominant process responsible for removing salt from the estuarine channel during the ebb.
    Description: This research was funded by Office of Naval Research grants N000-14-97-10134 and N000-14-97-10566, National Science Foundation grant OCE-9906787, a National Science Foundation graduate fellowship, and the WHOI Academic Programs Office.
    Keywords: Tidal currents ; Salinity ; Hydrodynamics ; Clifford A. Barnes (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2000
    Description: The variability of salt transport determines the variation of the length of the salinity intrusion and the large-scale density gradient in an estuary. This thesis contains three studies that address salt transport and the salt balance. The variation of salt transport with the depth, the along-channel salinity gradient, and the amplitude of the tidal velocity is investigated with analytic and numerical models. The results indicate that salt transport increases dramatically during stratified periods when vertical mixing is weak. Analysis of salt transport from observations in the Hudson Estuary show that stratified periods with elevated estuarine salt transport occur in five-day intervals once a month during apogean neap tides. Oscillatory salt transport, which is hypothesized to be primarily caused by lateral exchange and mixing of salt, appears to play a more minor role in the salt balance of the estuary. The salt balance of the estuary adjusts very little to the spring-neap modulation of salt transport but adjusts rapidly to pulses of freshwater flow. A simple model is used to investigate the process and time scales of adjustment of the salt balance by connecting variations of salt transport to the variations of freshwater flow and vertical mixing. The results show the length of the salinity intrusion adjust via advection to rapid and large increases in freshwater flow. The salinity intrusion adjusts more rapidly to the spring-neap cycle of tidal mixing the higher the freshwater flow.
    Description: The National Science Foundation provided support through a National Science Foundation Graduate Fellowship and NSF Grant OCE94-15617. Grants from the Hudson River Foundation (HRF Grant 006j96A) and the Office of Naval Research (Grant Number N00014-97-1-0134) have also contributed towards the work in this thesis. This work is also partially the result of research sponsored by NOAA National Sea Grant College Program Office, Department of Commerce, under Grant No. NA46RG0470, Woods Hole Oceanographic Institution (WHOI) Sea Grant project no. R/O-30.
    Keywords: Saltwater encroachment ; Salinity ; Measurement ; Mathematical models
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...