ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (3)
  • Springer  (2)
  • A.G.U.  (1)
  • American Association for the Advancement of Science
  • 2010-2014
  • 2005-2009  (3)
  • 2000-2004
  • 1925-1929
  • 2008  (3)
Collection
Years
  • 2010-2014
  • 2005-2009  (3)
  • 2000-2004
  • 1925-1929
Year
  • 1
    Publication Date: 2017-04-04
    Description: Tephra fall is a relevant hazard of Campi Flegrei caldera (Southern Italy), due to the high vulnerability of Naples metropolitan area to such an event. Here, tephra derive from magmatic as well as phreatomagmatic activity. On the basis of both new and literature data on known, past eruptions (Volcanic Explosivity Index (VEI), grain size parameters, velocity at the vent, column heights and erupted mass), and factors controlling tephra dispersion (wind velocity and direction), 2D numerical simulations of fallout dispersion and deposition have been performed for a large number of case events. A bayesian inversion has been applied to retrieve the best values of critical parameters (e.g., vertical mass distribution, diffusion coefficients, velocity at the vent), not directly inferable by volcanological study. Simulations are run in parallel on multiple processors to allow a fully probabilistic analysis, on a very large catalogue preserving the statistical proprieties of past eruptive history. Using simulation results, hazard maps have been computed for different scenarios: upper limit scenario (worst-expected scenario), eruption-range scenario, and whole-eruption scenario. Results indicate that although high hazard characterizes the Campi Flegrei caldera, the territory to the east of the caldera center, including the whole district of Naples, is exposed to high hazard values due to the dominant westerly winds. Consistently with the stratigraphic evidence of nature of past eruptions, our numerical simulations reveal that even in the case of a subplinian eruption (VEI = 3), Naples is exposed to tephra fall thicknesses of some decimeters, thereby exceeding the critical limit for roof collapse. Because of the total number of people living in Campi Flegrei and the city of Naples (ca. two million of inhabitants), the tephra fallout risk related to a plinian eruption of Campi Flegrei largely matches or exceeds the risk related to a similar eruption at Vesuvius.
    Description: Published
    Description: B07203
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: the Neapolitan area ; Campi Flegrei eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The main purpose of this paper is to introduce a Bayesian event tree model for eruption forecasting (BET_EF). The model represents a flexible tool to provide probabilities of any specific event at which we are interested in, by merging all the relevant available information, such as theoretical models, a priori beliefs, monitoring measures, and any kind of past data. BET_EF is based on a Bayesian procedure and it relies on the fuzzy approach to manage monitoring data. The method deals with short- and long-term forecasting, therefore it can be useful in many practical aspects, as land use planning, and during volcanic emergencies. Finally, we provide the description of a free software package that provides a graphically supported computation of short- to long-term eruption forecasting, and a tutorial application to the recent MESIMEX exercise at Vesuvius.
    Description: Published
    Description: 623-632
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: partially_open
    Keywords: eruption forecasting ; event tree ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We consider the process of slow extrusion of very viscous magma that forms lava domes. Dome-building eruptions are commonly associated with hazardous phenomena, in- cluding pyroclastic flows generated by dome collapses, explosive eruptions and volcanic blasts. These eruptions commonly display fairly regular alternations between pe- riods of high and low or no activity with time scales from hours to years. Usually hazardous phenomena are asso- ciated with periods of high magma discharge rate, thus, understanding the causes of pulsatory activity during ex- trusive eruptions is an important step towards forecasting volcanic behavior, especially the transition to explosive ac- tivity when magma discharge rate increases by a few orders of magnitude. In recent years the risks have increased be- cause the population density in the vicinity of many active volcanoes has increased.
    Description: Published
    Description: 3.6. Fisica del vulcanismo
    Description: open
    Keywords: Volcanic Eruptions ; Cyclicity ; During Lava ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...