ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk  (3)
  • Fumarole  (3)
  • Mt. Etna  (3)
  • Springer  (9)
  • BioMed Central
  • Blackwell Publishing Ltd
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2010-2014  (5)
  • 2005-2009  (4)
  • 1965-1969
  • 1960-1964
  • 2010  (5)
  • 2008  (4)
Collection
Years
  • 2010-2014  (5)
  • 2005-2009  (4)
  • 1965-1969
  • 1960-1964
Year
  • 1
    Publication Date: 2020-11-16
    Description: Active volcanoes characterized by open conduit conditions generate sonic and infrasonic signals, whose investigation provides useful information for both monitoring purposes and studying the dynamics of explosive processes. In this work, we discuss the automatic procedures implemented for a real-time application to the data acquired by a permanent network of five infrasound stations running at Mt. Etna volcano. The infrasound signals at Mt. Etna consist in amplitude transients, called infrasound events. The adopted procedure uses a multi-algorithm approach for event detection, counting, characterization and location. It is designed for an efficient and accurate processing of infrasound records provided by single-site and array stations. Moreover, the source mechanism of these events can be investigated off-line or in near real-time by using three different models: i) Strombolian bubble; ii) resonating conduit and iii) Helmholtz resonator. The infrasound waveforms allow us to choose the most suitable model, to get quantitative information about the source and to follow the time evolution of the source parameters.
    Description: Published
    Description: 1215–1231
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Description: open
    Keywords: infrasound ; monitoring system ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Natural precipitation and water samples from passive devices were collected at Mt. Vesuvius and Vulcano Island, Italy, during the period 2004–2006, in order to investigate its possible interactions with fumarolic gases. Evidence of chemical reactions between fumarolic fluids and rain samples before and after its deposition into the sampling devices was found at Vulcano Island. Very low pH values (down to 2.5) and significant amounts of chlorine and sulfate (up to 22 mEq/l) were measured at sampling points located close to the fumarolic field. In contrast, anthropogenic contributions and/or dissolution of aerosols (both maritime and continental) influence the chemistry of rainwaters at Mt. Vesuvius, which show inter-annual variations that are highly consistent with those recorded at the coastal site at Vulcano Island. Chemistry of waters directly exposed to fumarolic fluids may then give useful information about its temporal evolution, holding the signal of the ‘‘maximum’’ chemical event occurred in the meanwhile. In addition, the observation of the health status of vegetation colonizing the immediate surroundings of the fumarolic fields, due to its strong dependence on the interactions with these fluids, may work as a possible biomarker of volcanic activity
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: N/A or not JCR
    Description: reserved
    Keywords: Geochemistry ; Precipitation ; Fumarole ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The Irpinia Seismic Network (ISNet) is deployed in Southern Apennines along the active fault system responsible for the 1980, November 23, MS 6.9 Campania-Lucania earthquake. It is comprised of 28 stations and covers an area of about 100x70 km2. Each site is equipped with a 1-g full-scale accelerometer and a short-period velocimeter. Thanks to its design characteristics, i.e. the wide dynamic recording range and the high density of stations, the ISNet network is mainly devoted to estimating in real-time the earthquake location and magnitude from low- to high- magnitude events, and to providing ground-motion parameters to get some insights about the ground shaking expected. Moreover, the availability of high-quality data allows studying the source processes related to the seismogenetic structures in the area. The network layout, the data communication system and protocols and the main instrumental features are described in the paper. Most of the data analysis is performed through the Earthworm software package, that also provides the automatic earthquake locations, while custom software has been developed for real-time computation of the source parameters and shaking maps. Technical details about these procedures are given in the article. The data collected at the ISNet stations are available upon request.
    Description: Published
    Description: 1105-1129
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: early warning ; real time seismology ; Irpinia region ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Natural precipitation and water samples from passive devices were collected at Mt. Vesuvius and Vulcano Island, Italy, during the period 2004–2006, in order to investigate its possible interactions with fumarolic gases. Evidence of chemical reactions between fumarolic fluids and rain samples before and after its deposition into the sampling devices was found at Vulcano Island. Very low pH values (down to 2.5) and significant amounts of chlorine and sulfate (up to 22 mEq/l) were measured at sampling points located close to the fumarolic field. In contrast, anthropogenic contributions and/or dissolution of aerosols (both maritime and continental) influence the chemistry of rainwaters at Mt. Vesuvius, which show inter-annual variations that are highly consistent with those recorded at the coastal site at Vulcano Island. Chemistry of waters directly exposed to fumarolic fluids may then give useful information about its temporal evolution, holding the signal of the ‘‘maximum’’ chemical event occurred in the meanwhile. In addition, the observation of the health status of vegetation colonizing the immediate surroundings of the fumarolic fields, due to its strong dependence on the interactions with these fluids, may work as a possible biomarker of volcanic activity.
    Description: Published
    Description: 159-171
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Precipitation ; Fumarole ; Vesuvius ; Vulcano ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-24
    Description: National seismic risk maps are an important risk mitigation tool as they can be used for the prioritization of regions within a country where retrofitting of the building stock or other risk mitigation measures should take place. The production of a seismic risk map involves the convolution of seismic hazard data, vulnerability predictions for the building stock and exposure data. The seismic risk maps produced in Italy over the past 10 years are compared in this paper with recent proposals for seismic risk maps based on state-of-the-art seismic hazard data and mechanics-based vulnerability assessment procedures. The aim of the paper is to open the discussion for the way in which future seismic risk maps could be produced, making use of the most up-to-date information in the fields of seismic hazard evaluation and vulnerability assessment.
    Description: Published
    Description: 149–180
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: open
    Keywords: Seismic risk ; Seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-11-17
    Description: Ground-based thermal infrared surveys can contribute to complete heat budget inventories for fumarole fields. However, variations in atmospheric conditions, plume condensation and mixed-pixel effects can complicate vent area and temperature measurements. Analysis of vent temperature frequency distributions can be used, however, to characterise and quantify thermal regions within a field. We examine this using four thermal infrared thermometer and thermal image surveys of the Vulcano Fossa fumarole field (Italy) during June 2004 and July 2005. These surveys show that regions occupied by low temperature vents are characterised by distributions that are tightly clustered around the mean (i.e., the standard deviation is low), highly peaked (positive kurtosis) and skewed in the low temperature direction (negative skewness). This population is associated with wet fumaroles, where boiling controls maximum temperature to cause a narrow distribution with a mode at 90–100°C. In contrast, high temperature vent regions have distributions that are widely spread about the mean (i.e., the standard deviation is high), relatively flat (negative kurtosis) and skewed in the high temperature direction (positive skewness). In this dry case, fumaroles are water-free so that maximum temperatures are not fixed by boiling. As a result greater temperature variation is possible. We use these results to define two vent types at Vulcano on the basis of their thermal characteristics: (1) concentrated (localized) regions of high temperature vents, and (2) dispersed low temperature vents. These occur within a much larger region of diffuse heat emission across which surfaces are heated by steam condensation, the heat from which causes elevated surface temperatures. For Vulcano's lower fumarole zone, high and low temperature vents occupied total areas of 3 and 6 m2, respectively, and occurred within a larger (430 m2) vent-free zone of diffuse heat emission. For this lower zone, we estimate that 21– 43×103 W of heat was lost by diffuse heat emission. A further 4.5×103 W was lost by radiation from high temperature vents, and 6.5×103 W from low temperature vents. Thus, radiative heat losses from high and low temperature vents within Vulcano's lower fumarole zone respectively account for 10% and 15% of the total heat lost from this zone. This shows that radiation from open vents can account for a non-trivial portion of the total fumarole field heat budget.
    Description: Published
    Description: 441
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Fumarole ; Vulcano ; Thermal image ; Infrared thermometer ; Heat flux ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Mount Etna is an open conduit volcano, characterised by persistent activity, consisting of degassing and explosive phenomena at summit craters, frequent flank eruptions, and more rarely, eccentric eruptions. All eruption typologies can give rise to lava flows, which represent the greatest hazard by the volcano to the inhabited areas. Historical documents and scientific papers related to the 20th century effusive activity have been examined in detail, and volcanological parameters have been compiled in a database. The cumulative curve of emitted lava volume highlights the presence of two main eruptive periods: (a) the 1900–1971 interval, characterised by a moderate slope of the curve, amounting to 436 · 106 m3 of lava with average effusion rate of 0.2 m3/s and (b) the 1971–1999 period, in which a significant increase in eruption frequency is associated with a large issued lava volume (767 · 106 m3) and a higher effusion rate (0.8 m3/s). The collected data have been plotted to highlight different eruptive behaviour as a function of eruptive periods and summit vs. flank eruptions. The latter have been further subdivided into two categories: eruptions characterised by high effusion rates and short duration, and eruptions dominated by low effusion rate, long duration and larger volume of erupted lava. Circular zones around the summit area have been drawn for summit eruptions based on the maximum lava flow length; flank eruptions have been considered by taking into account the eruptive fracture elevation and combining them with lava flow lengths of 4 and 6 km. This work highlights that the greatest lava flow hazard at Etna is on the south and east sectors of the volcano. This should be properly considered in future land-use planning by local authorities.
    Description: Published
    Description: 407–443
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; effusive activity ; database ; lava flow length ; eruptive fractures ; vent elevation ; hazard zonation ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Kostrov's (1974) algorithm for seismic-strain tensor computations, in the version implemented by Wyss et al. (1992a) for error estimates, has been applied to shear-type earthquakes occurring beneath the Etna volcano during 1990-1996. Space-time variations of strain orientations and amplitudes have been examined jointly with ground-deformation and gravimetric data collected in the same period and reported in the literature. Taking also into account the information available from volcanological observations and structural geology, we propose a model assuming that hydraulic pressure by magma emplaced in nearly north-south vertical structures produces the E-W orientation of the maximum compressive strain found in the upper 10 km beneath the crater area. In contrast, regional tectonics deriving from the slow, north-south convergence between the African and European plates appear to play a dominant role in the generation of stress and strain fields at crustal depths deeper than 10 km below the volcano. According to our interpretation, the progressive ascent of magma through the upper crust prior to eruption produces the observed gravity changes, cone inflation and unusual seismic strain rate in the upper 10 km associated with a more sharply defined seismic deformation regime (i.e. very small confidence limits of the epsilon 1 orientation). In agreement with this model, deflation revealed by ground-deformation data during the course of the major 1991-1993 eruption was accompanied by a practically nil level of shallow seismicity.
    Description: Published
    Description: 318-330
    Description: JCR Journal
    Description: open
    Keywords: Mt. Etna ; Italy ; Earthquakes ; Seismic strain ; Stress inversion ; Volcanic processes ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-24
    Description: The concerted effort to collect earthquake damage data in Italy over the past 30 years has led to the development of an extensive database from which vulnerability predictions for the Italian building stock can be derived. A methodology to derive empirical vulnerability curves with the aforementioned data is presented herein and the resulting curves have been directly compared with mechanics-based vulnerability curves. However, it has been found that a valid comparison between the empirical and analytical vulnerability curves is not possible mainly due to a number of shortcomings in the database of surveyed buildings. A detailed discussion of the difficulties in deriving vulnerability curves from the current observed damage database is thus also presented.
    Description: DPC — Dipartimento della Protezione Civile MIUR – Ministero dell’Università e della Ricerca - project AIRPLANE
    Description: Published
    Description: 485–504
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: JCR Journal
    Description: reserved
    Keywords: vulnerability curves ; damage data ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...