ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions  (7)
  • 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy  (5)
  • Elsevier  (11)
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2005-2009  (11)
  • 2007  (11)
Collection
Publisher
Years
  • 2005-2009  (11)
Year
  • 1
    Publication Date: 2021-01-25
    Description: The Late Pleistocene Albano Maar hosted the most recent volcanic activity of the Colli Albani Volcanic District, represented at nearvent sections by a thick pyroclastic succession of seven units clustered in two main eruptive cycles dated at around 70–68 and 41–36 ka B.P., respectively. Recent stratigraphic investigations allowed us to recognise a pyroclastic succession comprising four eruptive units widely spread in the northeastern sectors of the Colli Albani volcano, up to 15km eastward from the Albano Maar. Integrated tephrostratigraphic, morpho-pedostratigraphic, archaeological, petrological and geochemical analyses enable us to recognise them as distal deposits of the first, third, fifth and seventh Albano Maar eruptions, enlarging significantly their previously supposed dispersion area. Further tephrostratigraphic studies in central Apennine area, allowed us to identify the Albano Maar products in Late Pleistocene deposits of several intermountain basins, extending still further the dispersion area of distal ash fallout as far as 100–120km from the vent. On the basis of the identification and the study of these previously unrecognised mid-distal Albano Maar deposits, a reappraisal of the eruptive scenarios and related energetic parameters is proposed.
    Description: Published
    Description: 160–178
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Colli Albani ; Albano ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Video surveillance systems are consolidated techniques for monitoring eruptive phenomena in volcanic areas. Along with these systems, which use standard video cameras, people working in this field sometimes make use of infrared cameras providing useful information about the thermal evolution of eruptions. Real-time analysis of the acquired frames is required, along with image storing, to analyze and classify the activity of volcanoes. Human effort and large storing capabilities are hence required to perform monitoring tasks. In this paper we present a new strategy aimed at improving the performance of video surveillance systems in terms of human-independent image processing and storing optimization. The proposed methodology is based on real-time thermo-graphic analysis of the area considered. The analysis is performed by processing images acquired with an IR camera and extracting information about meaningful volcanic events. Two software tools were developed. The first provides information about the activity being monitored and automatically adapts the image storing rate. The second tool automatically produces useful information about the eruptive activity encompassed by a selected frame sequence. The software developed includes a suitable user interface allowing for convenient management of the acquired images and easy access to information about the volcanic activity monitored.
    Description: Published
    Description: 85-91
    Description: reserved
    Keywords: Volcano monitoring ; Image processing ; Smart storing rate ; Eruption data ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 483034 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Geological and structural analyses and ground deformation measurements performed along the eastern portion of the Pernicana fault system and its splay segments allow the structural setting and the kinematic behaviour of the fault to be defined. In addition, the interrelationship between the deformation style of fault segments and the variations of the volcanic pile thickness along the fault strike are investigated using detailed sedimentary basement data. Brittle deformation dominates the N105° fault segment, where the volcanic pile is more than 200 m thick, with the development of a well-defined fault plane characterised by main left-lateral kinematics. The transtensive deformation of the N105° fault is partitioned eastward at Rocca Campana to a main N120° segment. Here, this segment crosses a culmination of the sedimentary basement close to Vena village where the deformation pattern of the thin volcanic pile, less than 100 m thick, is influenced by the more ductile behaviour of the basement generating local short structures with different orientation and kinematics in the southern block of the fault. On the northern one, short E–W trending faults show left-lateral displacements with a minor reverse component on south-dipping planes. This kinematics is related to the oblique orientation of the N120° segment with respect to the seaward motion of the NE flank of Etna. On the whole, the compressive component of the deformation affecting the N120° segment of the Pernicana fault system generates a positive flower structure.
    Description: Published
    Description: 210-232
    Description: JCR Journal
    Description: reserved
    Keywords: faults ; ground deformation ; Mt. Etna ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2898298 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Stromboli is a composite volcano, rising about 2.5 km above the sea floor, whose top lies about 1 km above the sea level forming the northernmost island of the Aeolian Archipelago volcanic arc (Tyrrhenian Sea). On December 28th, 2002, lava flows outpoured from the northern wall of NE crater and come down in the Sciara del Fuoco (SdF), a deep depression that marks the NW flank of the volcano edifice. On December 30th, 2002, two landslides occurred on the northern part of the SdF; it moved a mass in the order of tens of millions of cubic meters both above and below the sea level. The landslide produced a tsunami that causes significant damage on the eastern cost of the island, reaching the others Aeolian Islands and the Sicilian and south Italian coasts. This event lead to the upgrade of the ground deformation monitoring system, already existing on the island; the new requirement was the real-time detection of the deformations related to potential slope failures of the SdF. To this aim, a remotely controlled monitoring system, based both on GPS and topographic techniques was planned and set up in few months. The new monitoring system allowed to continuously measure the ground deformations occurring on the SdF, by integrating both terrestrial topographic and satellite geodetic techniques. Despite this system was severely damaged during the 7-months lasting eruption, it allowed to monitor important eruptive phases. For the first time, an accurate data set about the actual mass movements of the SdF and the crater area was available. It provided data that significantly supported the Civil Protection Authorities in making decisions and constrain the hypothesis about the landslide movements and volcanic activity. After the end of the eruption, the system was reinstated in order to optimize the instruments and to set up a monitoring system aimed at measuring deformations forecasting other flank collapses.
    Description: Dipartimento Nazionale della Protezione Civile
    Description: Published
    Description: 13–31
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Ground deformation ; Real-time monitoring ; Eruption forecasting ; Landslide forecasting ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Tephra fallout represented a major source of hazard for eastern Sicily during the 2001 eruption of Mt. Etna (Italy) between 19 July and 6 August. Long-lasting explosive activity was generated from the 2570 m vent, producing a volcanic plume up to 5 km high above sea level. The eruption caused copious lapilli and ash fallout over the volcano flanks for several days. Flight operations were cancelled at the Catania and Reggio Calabria airports; health risk and economic damage put communities living close to this active volcano on the alert. The explosive activity at the 2570 m vent had three main phases characterized by phreatomagmatic, magmatic and vulcanian explosions. In this paper, we analyze the first explosive phase between 19 and 24 July that formed a tephra deposit on the volcano's south-east flanks. Immediately after the first phase of the eruption, numerous tephra samples were collected in order to draw an isomass map, calculate physical parameters for the eruption and analyze the plume dispersion on the basis of deposit geometry. The tephra deposit shows a bilobate shape due to the change with time of both the vigour of the eruption and the wind direction and velocity that caused a higher rate of particle accumulation along two dispersal axes (SE and SSE). The total mass of tephra erupted was calculated with two different fitting methods: exponential line segments and a power law fit on the semi-logarithmic plot of mass per unit area versus , resulting in values of 1.02 109 kg and 2.31 109 kg, respectively. The whole deposit grain-size was calculated applying the Voronoi tessellation method, it shows a mode of 2 and thus indicates a high degree of magma fragmentation during the first phase of the eruption. Plume dispersal was investigated by an advection–diffusion model to reconstruct the tephra deposit. In the modelling, we took into account the variations of wind direction and velocity, and eruption intensity by dividing the explosive phase into sixteen sub-eruptions and considering the final deposit as the sum of the mass computed for each sub-eruption. Using best fit procedures, we find that the optimal agreement between computed values and field data is obtained by using the total mass calculated with the power law fit and a terminal settling velocity distribution with a particle aggregation model. The computed tephra dispersal was able to reproduce the bilobate shape of the real deposit. This work proves that advection–diffusion models can describe sedimentation processes of weak, i.e., bent-over, long-lasting plumes if the variations of wind direction and velocity, and eruptive intensity are included.
    Description: Published
    Description: 147-164
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; basaltic explosive activity ; violent strombolian eruption ; tephra deposit ; dispersal modelling ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We investigated the relationships between modelled strain produced by explosive activity through a volcanic conduit, observed paroxystic episodes on Mt. Etna, and high-precision continuous tilt signals recorded during such events from the tilt monitoring network. The tilt changes detected during two different explosive episodes were compared with those calculated from analytical models of ground deformation in order to constrain source properties. The July 22, 1998 subplinian explosion from Voragine crater produced small tilt changes (order of 0.5–1.5 μrad) recorded over the entire volcano edifice, implying a small storage at nearly 2.5 km below sea level. The 1998–2000 period was characterized by tens of spectacular lava fountains from the South-East crater. Very small tilt change (∼ 0.1 μrad) was recorded by a single station on the high north-eastern flank of Mt. Etna and indicated the action of a limited and shallow conduit with 1.5–1.9 km depth. These results provide a contribution to better infer the shallow plumbing system beneath Mt. Etna.
    Description: Published
    Description: 221–234
    Description: reserved
    Keywords: explosive activity ; tilt data ; volcano source modeling ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1124063 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Tropospheric volcanic plume features have been derived from airborne multispectral images collected during field measurement campaigns at the Mt. Etna volcano in June 1997, during a quiescent period, and in July 2001 during an eruptive period. Results have been obtained in terms of mapping the volcanic aerosol optical thickness (AOT), the A ˚ ngstro¨ m parameters and the water vapor content using different bands from visible to infrared. The AOT values show average values of 0.1 and 1, for quiescent and eruptive plumes, respectively, demonstrating that this geophysical parameter well indicates a major contribution of particulates in the explosive plume with respect to the quiescent one. The mapping of A ˚ ngstro¨ m parameters, in the explosive case, indicates the presence of larger particles and their distribution along the plume, while in the quiescent case indicates the particle size is dominated by small particles with an effective radius about 1 mm. Further in the quiescent case, the map of water vapor shows low values indicating that water vapor emitted condenses mainly in aerosols.
    Description: Published
    Description: 981-994
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna; Volcanic aerosol; Mivis; Radiative transfer model ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-03
    Description: Mount Etna has developed at the intersection of two regional tectonic lineaments, the NNW–SSE trending Hybleo–Maltese escarpment, which separates the thick inland continental crust of the African platform from the Ionian Mesozoic oceanic crust, and the NE–SW Messina–Fiumefreddo fault that marks a rift zone between south Calabria and north-eastern Sicily, extending as far as the Mt. Etna area. All tectonic features affect, with outstanding surface features, the eastern side of the volcano. The eastern flank of the volcano is affected by a long-term motion toward ESE. In 1997, in order to increase the detail of the ground deformation pattern on the lower eastern flank of Mt. Etna, a new GPS network, the “Ionica” network, was installed on this sector of the volcano. This GPS network consists of 24 stations and covers the lower eastern flank of the volcano from the town of Catania to Taormina and from the coastline up to an altitude of about 1300 m. All the new stations consist in self-centring benchmarks; this kind of benchmark allows all station set-up errors to be avoided. Before the merging of the Ionica network to the frame of the global GPS network of Mt. Etna (in June 2001), three surveys were carried out on this network: in September 1997, August 1998 and January 2001. From the ground deformation pattern, it is possible to distinguish two different sectors, showing different characteristics of deformation. The southern part of the network shows a more uniform distribution of the vertical motion with a mean SE-ward horizontal component while the northern one shows an heterogeneous vertical motion with a ESE-ward horizontal component. Furthermore, a higher velocity is detected between 1997 and 1998, due to the additional stress induced by a shallow intrusion on the NW flank of the volcano. The model resulting from data inversions defines a wide sliding plane beneath the entire eastern flank of the volcano with a low dip angle. The expected velocity vectors fit well the observed ones, even if the measured velocities are still quite higher than expected, at lowermost stations. The vertical inclination of the velocity vectors measured during the 1998–2001 period, gradually decreases from West to East suggesting a sort of rotational movement of the south-eastern flank, interrupted by some anomalous vectors on the lower part, that show higher vertical velocities. These anomalies, being located on a wedge defined by the intersection of the main NNW–SSE and NE–SW fault systems and near the Timpe faults, are probably due to the activity of the vertical faults cutting the lower eastern flank of Mt. Etna. Stations lying on the hanging wall and on the footwall of the Timpe fault system are affected by similar horizontal displacements, meaning that these structures are moving eastwards together with the sliding flank; this evidence suggests that the Timpe faults are probably second order structures, with respect to the detachment surface. These results depict a structural framework of the eastern flank of Mt. Etna in which the low angle dislocation can be considered as a first order approximation of an actual listric plane and the current active part of the Timpe fault system is confined above the detachment surface.
    Description: Published
    Description: 357-369
    Description: reserved
    Keywords: ground deformation ; flank dynamics ; volcano–tectonics ; Etna volcano ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 813929 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-10-18
    Description: We studied the surface deformations affecting the southeastern sector of the Po Plain sedimentary basin, in particular the area of Bologna. To this aim an advanced DInSAR technique, referred to as DInSAR–SBAS (Small BAseline Subset), has been applied. This technique allows monitoring the temporal evolution of a deformation phenomenon, via the generation of mean deformation velocity maps and displacement time series from a data set of acquired SAR images. In particular, we have processed a set of SAR data acquired by the European Remote Sensing Satellite (ERS) sensors and compared the achieved results with optical levelling measurements, assumed as reference. The surface displacements detected by DInSAR SBAS from 1992 to 2000 are between 10 mm/year in the historical part of Bologna town, and up to 59 mm/year in the NE industrial and agricultural areas. Former measurements from optical levelling referred to 1897 show 2–3 mm/year vertical movements. This trend of displacement increased in the second half of the 20th century and the subsidence rate reached 60 mm/year. We compared the more recent levelling campaigns (in 1992 and late 1999) and DInSAR results from 1992 to 1999. The standard deviation of the difference between levelling data, projected onto the satellite Line Of Sight, and DInSAR results is 2 mm/year. This highlights a good agreement between the measurements provided by two different techniques. The explanation of soil movements based on interferometric results, ground data and geological observations, allowed confirming the anthropogenic cause (surface effect due to the overexploitation of the aquifers) and highlights a natural, tectonic, subsidence.
    Description: Published
    Description: 304-316
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: partially_open
    Keywords: InSAR ; surface deformation ; SAR interferometry ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-02
    Description: A comparison between the ZPD (Zenith Path Delay), obtained from GPS measurements, and the expected delay, derived from models used to compensate tropospheric effects on SAR interferograms, is made. The results of the two methods are comparable, though the available data set is not large enough for a complete statistical validation of the methods. The results of this preliminary study suggest a possible integration of GPS-based ZPD data with cheap and standard meteorological data, since the estimated atmospheric component proved to be similar. Furthermore, the impact on volcanology of the effects measured by GPS, and in particular on the determination of the depth of the volcanic sources, is discussed.
    Description: MADVIEWS EC Project ENV4-CT96-0294
    Description: Published
    Description: 1343-1357
    Description: JCR Journal
    Description: open
    Keywords: SAR ; GPS ; Tropospheric delay ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-01-16
    Description: On April 5, 2003, Stromboli volcano (Italy) produced the most violent explosion of the past 50 years. The event was exceptionally well documented thanks to the presence on the island of several scientists and a large number of instruments deployed over the preceding months to monitor the effusive eruption that began in December 2002. Integration of visual documentation, deposit features and geophysical data allowed an accurate reconstruction of the explosive event and its dynamics. The eruption consisted of a 8-min long explosive event which evolved through four phases whose timing was precisely recorded by an infrared thermometer located about 450 m from the summit crater. Phases 2 and 3 lasted 39 and 42 s, respectively. Both had an impulsive character, were responsible for ejecting almost the entire mass of the pyroclastic products. Phases 1 and 4 represented, respectively, a short-lived precursory event and a waning tale. During Phase 2, meter-sized ballistic blocks were launched with velocities of 170 m/s to altitudes of up to 1400 m above the craters. These fell on the volcano flanks and on the village of Ginostra, about 2 km distant from the vent. A vertical jet rose above the craters which developed to feed a convective plume that reached a height of up to 4 km. The calculated mass of the Phase 2 fallout deposit and mass discharge rate were 1.1–1.4×108 kg and 2.8– 3.6×106 kg/s, respectively. During Phase 3 a scoria flow deposit, with an estimated volume of 0.9–1.1×104 m3, was erupted from the same vent that fed the ongoing sustained lava flow. The average mass discharge rate for this phase was 2.5–3.1×105 kg/s. Products emitted during Phases 2 and 3 consisted of lithic and fresh magmatic material in similar proportions. The juvenile fraction consisted of a deep-originated, almost aphyric, highly vesicular pumice mingled with a shallow-derived, crystal-rich, moderately vesicular scoria. Similarities with the eruption dynamics of other historical paroxysms at Stromboli makes the April 5, 2003 explosion representative of these highly energetic events that constitute the most hazardous volcanic phenomena at Stromboli volcano.
    Description: Published
    Description: 594-606
    Description: JCR Journal
    Description: reserved
    Keywords: stromboli ; Thermal monitoring; paroxysm ; explosive dynamics ; ballistic ejecta ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...