ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (11)
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases  (8)
  • Elsevier  (19)
  • American Institute of Physics
  • Blackwell Publishing Ltd
  • Nature Publishing Group
  • 2005-2009  (19)
  • 2007  (19)
Collection
Years
  • 2005-2009  (19)
Year
  • 1
    Publication Date: 2017-04-04
    Description: Video surveillance systems are consolidated techniques for monitoring eruptive phenomena in volcanic areas. Along with these systems, which use standard video cameras, people working in this field sometimes make use of infrared cameras providing useful information about the thermal evolution of eruptions. Real-time analysis of the acquired frames is required, along with image storing, to analyze and classify the activity of volcanoes. Human effort and large storing capabilities are hence required to perform monitoring tasks. In this paper we present a new strategy aimed at improving the performance of video surveillance systems in terms of human-independent image processing and storing optimization. The proposed methodology is based on real-time thermo-graphic analysis of the area considered. The analysis is performed by processing images acquired with an IR camera and extracting information about meaningful volcanic events. Two software tools were developed. The first provides information about the activity being monitored and automatically adapts the image storing rate. The second tool automatically produces useful information about the eruptive activity encompassed by a selected frame sequence. The software developed includes a suitable user interface allowing for convenient management of the acquired images and easy access to information about the volcanic activity monitored.
    Description: Published
    Description: 85-91
    Description: reserved
    Keywords: Volcano monitoring ; Image processing ; Smart storing rate ; Eruption data ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 483034 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The island of Ischia, located at the northwestern end of the Gulf of Napoli (Italy), is a volcanic area that is historically active (the Arso eruption, in 1302 and the Casamicciola earthquake, in 1883) and has diffuse hydrothermal phenomena. We present in this work a study of the surface deformation occurring in the island, which is based on applying the Differential Synthetic Aperture Radar Interferometry (DInSAR) algorithm referred to as Small BAseline Subset (SBAS) technique. This study is focused on the 1992–2003 time interval and SAR data acquired by the European Remote Sensing (ERS) satellites from ascending and descending orbits have been used, thus allowing us to discriminate the vertical and east–west components of the displacements. A validation of the DInSAR results has been carried out first by comparing the vertical deformations estimated from the SAR data with those measured from the spirit leveling network that is present in the area. In particular, we computed the difference between the mean vertical deformation velocities estimated from the SAR and the corresponding geodetic measurements along three main leveling lines; the maximum value of the root mean square difference is of about 1 mm/yr. The final discussion is dedicated to the interpretation of the detected displacements, benefiting from the overall information extracted from the ascending and descending DInSAR measurements. In particular, DInSAR data relative to the vertical deformation component show that the present-day subsidence of Ischia mainly develops in areas characterized by active landsliding and along faults; moreover, the deflation of the island, which is recorded by the horizontal displacement component, is probably related to the de-pressurization of the hydrothermal system.
    Description: Published
    Description: 399-416
    Description: reserved
    Keywords: SAR interferometry ; SBAS technique ; leveling survey ; hazard ; hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1346550 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: This paper focuses on the role that hydrothermal systems may play in caldera unrest. Changes in the fluid chemistry, temperature, and discharge rate of hydrothermal systems are commonly detected at the surface during volcanic unrest, as hydrothermal fluids adjust to changing subsurface conditions. Geochemical monitoring is carried out to observe the evolving system conditions. Circulating fluids can also generate signals that affect geophysical parameters monitored at the surface. Effective hazard evaluation requires a proper understanding of unrest phenomena and correct interpretation of their causes. Physical modeling of fluid circulation allows quantification of the evolution of a hydrothermal system, and hence evaluation of the potential role of hydrothermal fluids during caldera unrest. Modeling results can be compared with monitoring data, and then contribute to the interpretation of the recent caldera evolution. This paper: 1) describes the main features of hydrothermal systems; 2) briefly reviews numerical modeling of heat and fluid flow through porous media; 3) highlight the effects of hydrothermal fluids on unrest processes; and 4) describes some model applications to the Phlegrean Fields caldera. Simultaneous modeling of different independent parameters has proved to be a powerful tool for understanding caldera unrest. The results highlight the importance of comprehensive conceptual models that incorporate all the available geochemical and geophysical information, and they also stress the need for high-quality, multi-parameter monitoring and modeling of volcanic activity.
    Description: Accepted
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: open
    Keywords: hydrothermal activity ; caldera unrest ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Several sites with anomalous emissions of carbon dioxide were investigated in the region south of Mt. Etna volcano in order to assess the types of emission (focused and/or diffuse), their surface extension and the total output of CO2. Most of the studied emissions are located on the southwest boundary of Mt. Etna, near the town of Paternò. They consist of three mud volcanoes (known as Salinelle), one spring with bubbling gas (Acqua Grassa) and one area of diffuse degassing (Peschería). Another site (Naftía Lake) with remarkable gas emissions (bubbling gas into a lake as well as adjacent areas of diffuse soil degassing) is located further southwest of Mt. Etna in an area of extinct Quaternary volcanism on the northwest margin of Hyblean Mts. In all of these areas the origin of the highest CO2 emissions is clearly magmatic, and degassing to the atmosphere occurs mostly through tectonic structures, probably at a regional scale. The magmatic source that feeds anomalous degassing in the above areas is likely to be the same that feeds volcanic activity at Mt. Etna. Focused degassing was measured at each emission vent using devices that measure the air speed, whereas diffuse soil degassing was measured using the accumulation chamber method. In total, 712 measurements were carried out (146 in focused degassing vents, 566 on diffuse degassing areas). Single CO2 output values ranged from 1.8 10−5 to 1.68 kg s−1. In the case of diffuse degassing areas, statistical analyses allowed to discriminate between biogenic CO2 and CO2 deriving from a magmatichydrothermal source. Only the efflux values from the latter source were considered in the output estimates. The total estimated output thus obtained was about 2.61 kg s−1, relevant to a total surface of about 146,500 m2 (which includes only the magmatic CO2 emissions). This value is comparable with that of most non-volcanic emissions from geothermal and/or faulted areas of centralsouthern Italy, as well with the CO2 output from some of the volcanic areas of Italy.
    Description: Istituto Nazionale di Geofisica e Vulcanologia; Dipartimento per la Protezione Civile.
    Description: Published
    Description: 46–63
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; mud volcanoes ; soil CO2 effluxes ; magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Stromboli is a composite volcano, rising about 2.5 km above the sea floor, whose top lies about 1 km above the sea level forming the northernmost island of the Aeolian Archipelago volcanic arc (Tyrrhenian Sea). On December 28th, 2002, lava flows outpoured from the northern wall of NE crater and come down in the Sciara del Fuoco (SdF), a deep depression that marks the NW flank of the volcano edifice. On December 30th, 2002, two landslides occurred on the northern part of the SdF; it moved a mass in the order of tens of millions of cubic meters both above and below the sea level. The landslide produced a tsunami that causes significant damage on the eastern cost of the island, reaching the others Aeolian Islands and the Sicilian and south Italian coasts. This event lead to the upgrade of the ground deformation monitoring system, already existing on the island; the new requirement was the real-time detection of the deformations related to potential slope failures of the SdF. To this aim, a remotely controlled monitoring system, based both on GPS and topographic techniques was planned and set up in few months. The new monitoring system allowed to continuously measure the ground deformations occurring on the SdF, by integrating both terrestrial topographic and satellite geodetic techniques. Despite this system was severely damaged during the 7-months lasting eruption, it allowed to monitor important eruptive phases. For the first time, an accurate data set about the actual mass movements of the SdF and the crater area was available. It provided data that significantly supported the Civil Protection Authorities in making decisions and constrain the hypothesis about the landslide movements and volcanic activity. After the end of the eruption, the system was reinstated in order to optimize the instruments and to set up a monitoring system aimed at measuring deformations forecasting other flank collapses.
    Description: Dipartimento Nazionale della Protezione Civile
    Description: Published
    Description: 13–31
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Ground deformation ; Real-time monitoring ; Eruption forecasting ; Landslide forecasting ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The sustained and uninterrupted plume degassing at Mount Etna volcano, Southern Italy, represents the troposphere’s most prominent natural source of fluorine. Of the ~ 200 Mg of fluorine (as HFg) emitted daily by the volcano, 1.6±2.7 Mg are deposited by wet and dry deposition. Fluorine-deposition via volcanic ash, here characterised for the first time, can be quite significant during volcanic eruptions (i.e. 60 Mg of fluorine were deposited during the 2001 eruption through volcanic ash, corresponding to ~ 85% of the total fluorine deposition). Despite the fact that these depositions are huge, the fate of the deposited fluorine and its impact on the environment are poorly understood. We herein present original data on fluorine abundance in vegetation (Castanea Sativa and Pinus Nigra) and andosoils from the volcano’s flank, in the attempt to reveal the potential impact of volcanogenic fluorine emissions. Fluorine contents in chestnut leaves and pine needles are in the range 1.8-35 µg/g and 2.1-74 µg/g respectively; they exceed the typical background concentrations in plants growing in rural areas, but fall within the lower range of typical concentrations in plants growing near high fluorine anthropogenic emission sources. The rare plume fumigations on the lower flanks of Mt Etna (distance 〉 4 km from summit craters) are probably the cause of the “undisturbed” nature of Etnean vegetation: climatic conditions, which limit the growth of vegetation on the upper regione deserta, are a natural limit to the development of more severe impacts. High fluorine contents, associated with visible symptoms, were only measured in pine needles at three sites, located near recently-active (2001 to 2003) lateral eruptive fractures. Total fluorine contents (FTOT) in the Etnean soils have a range of 112-341 µg/g, and fall within the typical range of undisturbed soils; fluorine extracted with distilled water (FH2O) have a range of 5.1 to 61 µg/g and accounts for 2-40 % of FTOT. FH2O is higher in topsoils from the eastern flank (downwind), while it decreases with depth in soil profiles and on increasing soil grain size (thereby testifying to its association with clay-mineral-rich, fine soil fractions). The fluorine adsorption capacity of the andosoils acts as a natural barrier that protects the groundwater system.
    Description: Published
    Description: 87-101
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Fluorine ; environmental volcanology ; impact of volcanic F ; soils ; vegetation ; volcanic ash ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Introduction of a special issue of the journal
    Description: no abstract
    Description: Published
    Description: 1-4
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Earth's degassing ; volcanic areas ; seismic areas ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Metamorphic and magmatic garnets are known to fractionate REE, with generally HREE-enriched patterns, and high Lu/ Hf and Sm/Nd ratios, making them very useful as geochemical tracers and in geochronological studies. However, these garnets are typically Al-rich (pyrope, almandine, spessartine, and grossular) and little is known about garnets with a more andraditic (Fe3+) composition, as frequently found in skarn systems. This paper presents LA-ICP-MS data for garnets from the Crown Jewel Au-skarn deposit (USA), discusses the factors controlling incorporation of REE into garnets, and strengthens the potential of garnet REE geochemistry as a tool to help understand the evolution of metasomatic fluids. Garnets from the Crown Jewel deposit range from Adr30Grs70 to almost pure andradite (Adr〉99). Fe-rich garnets (Adr〉90) are isotropic, whereas Al-rich garnets deviate from cubic symmetry and are anisotropic, often showing sectorial dodecahedral twinning. All garnets are extremely LILE-depleted, Ta, Hf, and Th and reveal a positive correlation of RREE3+ with Al content. The Al-rich garnets are relatively enriched in Y, Zr, and Sc and show ‘‘typical’’ HREE-enriched and LREE-depleted patterns with small Eu anomalies. Fe-rich garnets (Adr〉90) have much lower RREE and exhibit LREE-enriched and HREE-depleted patterns, with a strong positive Eu anomaly. Incorporation of REE into garnet is in part controlled by its crystal chemistry, with REE3+ following a coupled, YAG-type substitution mechanism ð½ X2þ VIII 1 ½REE3þ VIII þ1 ½ Si4þ IV 1½Z3þ IV þ1Þ, whereas Eu2+ substitutes for X2+ cations. Thermodynamic data (e.g., Hmixing) in grossular– andradite mixtures suggest preferential incorporation of HREE in grossular and LREE in more andraditic compositions. Variations in textural and optical features and in garnet geochemistry are largely controlled by external factors, such as fluid composition, W/R ratios, mineral growth kinetics, and metasomatism dynamics, suggesting an overall system that shifts dynamically between internally and externally buffered fluid chemistry driven by fracturing. Al-rich garnets formed by diffusive metasomatism, at low W/R ratios, from host-rock buffered metasomatic fluids. Fe-rich garnets grow rapidly by advective metasomatism, at higher W/R ratios, from magmatic-derived fluids, consistent with an increase in porosity by fracturing.
    Description: Published
    Description: 185-205
    Description: 3.6. Fisica del vulcanismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: A LA-ICP-MS ; Crown Jewel ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We investigated the relationships between modelled strain produced by explosive activity through a volcanic conduit, observed paroxystic episodes on Mt. Etna, and high-precision continuous tilt signals recorded during such events from the tilt monitoring network. The tilt changes detected during two different explosive episodes were compared with those calculated from analytical models of ground deformation in order to constrain source properties. The July 22, 1998 subplinian explosion from Voragine crater produced small tilt changes (order of 0.5–1.5 μrad) recorded over the entire volcano edifice, implying a small storage at nearly 2.5 km below sea level. The 1998–2000 period was characterized by tens of spectacular lava fountains from the South-East crater. Very small tilt change (∼ 0.1 μrad) was recorded by a single station on the high north-eastern flank of Mt. Etna and indicated the action of a limited and shallow conduit with 1.5–1.9 km depth. These results provide a contribution to better infer the shallow plumbing system beneath Mt. Etna.
    Description: Published
    Description: 221–234
    Description: reserved
    Keywords: explosive activity ; tilt data ; volcano source modeling ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1124063 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The pattern of volcanic tremor accompanyingthe 1989 September eruption at the south-east summit crater of Mount Etna is studied. In specific, sixteen episodes of lava fountaining, which occurred in the first phase of the eruption, are analysed. Their periodic behaviour, also evidenced by autocorrelation, allows us to define the related tremor amplitude increases as intermittent volcanic tremor episodes. Focusingon the regular intermittent behaviour found for both lava fountains and intermittent volcanic tremors, we tried an a posteriori forecast using simple statistical methods based on linear regression and the Student’ t-test. We performed the retrospective statistical forecast, and found that several eruptions would have been successfully forecast. In order to focus on the source mechanism of tremor linked to lava fountains, we investigated the relationship between volcanic and seismic parameters. A mechanism based on a shallow magma batch ‘regularly’ refilled from depth is suggested.
    Description: Published
    Description: open
    Keywords: Mount Etna ; lava fountain eruption ; volcanic tremor ; statistical a posteriori forecast ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 620756 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...