ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous  (5)
  • 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate  (3)
  • 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis  (3)
  • Springer  (9)
  • American Geophysical Union  (2)
  • EMBO Press
  • Essen : Verl. Glückauf
  • Hindawi
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2005-2009  (11)
  • 2007  (11)
Collection
Publisher
Years
  • 2005-2009  (11)
Year
  • 1
    Publication Date: 2021-06-25
    Description: Unstructured hexahedral mesh generation is a critical part of the model- ing process in the Spectral-Element Method (SEM). We present some ex- amples of seismic wave propagation in complex geological models, automati- cally meshed on a parallel machine based upon CUBIT (Sandia Laboratory, cubit.sandia.gov), an advanced 3D unstructured hexahedral mesh genera- tor that offers new opportunities for seismologist to design, assess, and improve the quality of a mesh in terms of both geometrical and numerical accuracy. The main goal is to provide useful tools for understanding seismic phenomena due to surface topography and subsurface structures such as low wave-speed sedimentary basins. Our examples cover several typical geophysical problems: 1) “layer-cake” volumes with high-resolution topography and complex solid- solid interfaces (such as the Campi Flegrei Caldera Area in Italy), and 2) models with an embedded sedimentary basin (such as the Taipei basin in Taiwan or the Grenoble Valley in France).
    Description: Published
    Description: 3.1. Fisica dei terremoti
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: meshing ; seismic wave propagation ; spectral element methond ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In August 2000 and July 2001 two seismic sequences, characterized by mainshocks with Ml (local magnitude) respectively 5.1 and 4.8, occurred in the Monferrato region (Italy). The regional seismic network of North-western Italy (RSNI) recorded more than 250 foreshocks and aftershocks. The routine locations, obtained from the Hypoellipse code, show a seismic activity concentrated in a circular area, of a radius of about 15 km, located near Acqui Terme, and randomly distributed in depth. Location errors, due to an uneven azimuthal station distribution of the regional seismic network, prevent recognition of the geometry of the active zone. Waveform analysis revealed the presence of several multiplets. In order to discriminate and successively relocate them, an automatic cross-correlation procedure was applied. Normalized cross-correlation matrixes, for the RSNI stations which recorded almost 90% of considered events, on the basis of a signal to noise ratio analysis, were computed using only S wave time windows. The use of a relocation procedure, based on the double-difference method which incorporates ordinary absolute travel-time measurements and/or cross-correlation differential travel-times, allowed us to overcome the constraints of the uneven distribution of stations giving a quite different frame of seismicity. The improved locations showed that the seismic activity is mainly arranged along a NE-SW oriented volume, at a depth range of 8–20 km, involving the basement crystalline units. This orientation is confirmed by the analysis of the focal mechanisms: most focal solutions show a strike slip component with one of the nodal planes consistent with the main orientation of the seismic events.
    Description: Published
    Description: 1-22
    Description: JCR Journal
    Description: reserved
    Keywords: earthquake clusters ; waveform ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Measurement of effusion rate is a primary objective for studies that model lava flow and magma system dynamics, as well as for monitoring efforts during on-going eruptions. However, its exact definition remains a source of confusion, and problems occur when comparing volume flux values that are averaged over different time periods or spatial scales, or measured using different approaches. Thus our aims are to: (1) define effusion rate terminology; and (2) assess the various measurement methods and their results. We first distinguish between instantaneous effusion rate, and time-averaged discharge rate. Eruption rate is next defined as the total volume of lava emplaced since the beginning of the eruption divided by the time since the eruption began. The ultimate extension of this is mean output rate, this being the final volume of erupted lava divided by total eruption duration. Whether these values are total values, i.e. the flux feeding all flow units across the entire flow field, or local, i.e. the flux feeding a single active unit within a flow field across which many units are active, also needs to be specified. No approach is without its problems, and all can have large error (up to ∼50%). However, good agreement between diverse approaches shows that reliable estimates can be made if each approach is applied carefully and takes into account the caveats we detail here. There are three important factors to consider and state when measuring, giving or using an effusion rate. First, the time-period over which the value was averaged; second, whether the measurement applies to the entire active flow field, or a single lava flow within that field; and third, the measurement technique and its accompanying assumptions.
    Description: Published
    Description: 1-22
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Lava ; Instantaneous effusion rate ; Time-averaged discharge rate ; Eruption rate ; Monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The FLOWGO thermo-rheological model links heat loss, core cooling, crystallization, rheology and flow dynamics for lava flowing in a channel. We fit this model to laser altimeter (LIDAR) derived channel width data, as well as effusion rate and flow velocity measurements, to produce a best-fit prediction of thermal and rheological conditions for lava flowing in a ~1.6 km long channel active on Mt. Etna (Italy) on 16th September 2004. Using, as a starting condition for the model, the mean channel width over the first 100 m (6 m) and a depth of 1 m we obtain an initial velocity and instantaneous effusion rate of 0.3–0.6 m/s and ~3 m3/s, respectively. This compares with field- and LIDAR-derived values of 0.4 m/s and 1–4 m3/s. The best fit between model-output and LIDAR-measured channel widths comes from a hybrid run in which the proximal section of the channel is characterised by poorly insulated flow and the medial-distal section by well-insulated flow. This best-fit model implies that flow conditions evolve down-channel, where hot crusts on a free flowing channel maximise heat losses across the proximal section, whereas thick, stable, mature crusts of ′a′a clinker reduce heat losses across the medial-distal section. This results in core cooling per unit distance that decreases from ~0.02–0.015°C m−1 across the proximal section, to ~0.005°C m−1 across the medial-distal section. This produces an increase in core viscosity from ~3800 Pa s at the vent to ~8000 Pa s across the distal section.
    Description: Published
    Description: L01301
    Description: 3.6. Fisica del vulcanismo
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Kava Channel ; LIDAR ; thermal modeling ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: A set of experiments forced with observed SST has been performed with the Echam4 atmospheric GCM at three different horizontal resolutions (T30, T42 and T106). These experiments have been used to study the sensitivity of the simulated Asian summer monsoon (ASM) to the horizontal resolution. The ASM is reasonably well simulated by the Echam4 model at all resolutions. In particular, the low-level westerly flow, that is the dominant manifestation of the Asian summer monsoon, is well captured by the model, and the precipitation is reasonably simulated in intensity and space appearance. The main improvements due to an higher resolution model are associated to regional aspects of the precipitation, for example the Western Ghats precipitation is better reproduced. The interannual variability of precipitation and wind fields in the Asian monsoon region appears to be less affected by an increase in the horizontal resolution than the mean climatology is. A possible reason is that the former is mainly SST-forced. Besides, the availability of experiments at different horizontal resolution realized with the Echam4 model coupled to a global oceanic model allows the possibility to compare these simulations with the experiments previously described. This analysis showed that the coupled model is able to reproduce a realistic monsoon, as the basic dynamics of the phenomenon is captured. The increase of the horizontal resolution of the atmospheric component influences the simulated monsoon with the same characteristics of the forced experiments. Some basic features of the Asian summer monsoon, as the interannual variability and the connection with ENSO, are further investigated.
    Description: Published
    Description: 273-290
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: monsoon ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: No abstract
    Description: Published
    Description: 117-118
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: open
    Keywords: geomorphology ; tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The effect of climate change on the Brewer– Dobson circulation and, in particular, the large-scale seasonal-mean transport between the troposphere and stratosphere is compared in a number of middle atmosphere general circulation models. All the models reproduce the observed upwelling across the tropical tropopause balanced by downwelling in the extra tropics, though the seasonal cycle in upwelling in some models is more semi-annual than annual. All the models also consistently predict an increase in the mass exchange rate in response to growing greenhouse gas concentrations, irrespective of whether or not the model includes interactive ozone chemistry. The mean trend is 11 kt s–1 year–1 or about 2% per decade but varies considerably between models. In all but one of the models the increase in mass exchange occurs throughout the year though, generally, the trend is larger during the boreal winter. On average, more than 60% of the mean mass fluxes can be explained by the EP-flux divergence using the downward control principle. Trends in the annual mean mass fluxes derived from the EP-flux divergence also explain about 60% of the trend in the troposphere-to-stratosphere mass exchange rate when averaged over all the models. Apart from two models the interannual variability in the downward control derived and actual mass fluxes were generally well correlated, for the annual mean.
    Description: Published
    Description: 727-741
    Description: JCR Journal
    Description: reserved
    Keywords: anthropogenic change ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: During 1991−93 at Mount Etna, long-period (LP) events occurring in swarms characterized the evolution of the eruption. The presence of multiplets i.e. groups of events with similar waveform signatures, has been recognized within this activity. Traditional techniques for locating LP events do not allow obtaining reliable hypocenters, which have only succeeded in placing earthquakes in a roughly 1 km2 area slightly east of the Mt. Etna Northeast Crater. Hypocenters have been relocated in two steps: the absolute location has been improved using Thurber’s code and a complex 3D velocity model; a highly precise relative location has been applied on multiplets to define the source geometry. 3D locations and high precision analysis suggest that during the 1991−93 eruption the resonator producing LP events was a part of the uppermost Northeast Crater conduit, measuring 210 meters in height and 45−50 meters in diameter.
    Description: Published
    Description: 663-674
    Description: reserved
    Keywords: waveform correlation ; stacked events ; 1991−93 eruption ; conduct geometry ; Mt. Etna Northeast Crater ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1209001 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: This work presents a methodology to study the interannual variability associated with summertime months in which extremely hot temperatures are frequent. Daily time series of maximum and minimum temperature fields (T max and T min, respectively) are used to define indexes of extreme months based on the number of days crossing thresholds. An empirical orthogonal function (EOF) analysis is applied to the monthly indexes. EOF loadings give information about the geographical areas where the number of days per month with extreme temperatures has the largest variability. Correlations between the EOF principal components and the time series of other fields allow plotting maps highlighting the anomalies in the large scale circulation and in the SSTs that are associated with the occurrence of extreme events. The methodology is used to construct the “climatology” of the extremely hot summertime months over Europe. In terms of both interannual and intraseasonal variability, there are three regions in which the frequency of the extremely hot days per month homogeneously varies: north-west Europe, Euro-Mediterranean and Eurasia region. Although extremes over those regions occur during the whole summer (June to August), the anomalous climatic conditions associated with frequent heatwaves present some intraseasonal variability. Extreme climate events over the north-west Europe and Eurasia are typically related to the occurrence of blocking situations. The intraseasonal variability of those patterns is related to the amplitude of the blocking, the relative location of the action centre and the wavetrain of anomalies downstream or upstream of the blocking. During June and July, blocking situations which give extremely hot climate conditions over north-west Europe are also associated with cold conditions over the eastern Mediterranean sector. The Euro-Mediterranean region is a transition area in which extratropical and tropical systems compete, influencing the occurrence of climate events: blockings tend to be related to extremely hot months during June while baroclinic anomalies dominate the variability of the climate events in July and August. We highlight that our method could be easily applied to other regions of the world, to other fields as well as to model outputs to assess, e.g. the potential change of extreme climate events in a warmer climate.
    Description: Published
    Description: 77-98
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: Extreme events ; Heatwaves ; Temperature anomalies ; climate variability ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-05-29
    Description: In January 2002 Mount Nyiragongo erupted foiditic lavas that covered the Southern volcano flank devastating vast urban areas. Lava flows originated from vents at different heights on the eruptive fissure displayed different velocities, from tens of km/h at the highest vents to slow-advance (0.1–1 km/h) in Goma town several km away from the volcano. To understand the different behavior of lava flows and their threat to the local population, we undertook a multidisciplinary study involving textural and rheological measurements and numerical simulations of heat transfer during magma ascent. We demonstrate that pre-eruptive cooling and syn-eruptive undercooling of magma determined the different rheological behavior of lava flows erupted from vents at diverse heights. Venting at lower altitudes is expected to produce viscous, slowly advancing lavas, although development of fluid, faster flows should be included among possible future eruptive scenarios.
    Description: Published
    Description: L06301
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Nyiragongo volcano ; textural and rheological measurements ; numerical simulations ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-06-09
    Description: Results of geological, geomechanical and seismometric investigations aiming at the analysis of the seismic response in a carbonate ridge of the Nera River valley (Central Apennines – Italy) are discussed. Geological and geomechanical surveys were aimed at defining the stratigraphic and structural setting of the outcropping formations and the jointing conditions of the rock mass. Velocimetric records of both ambient noise and small-magnitude earthquakes were analysed in order to identify amplification conditions. The analysis was carried out in the time domain, through directional energy evaluation, and in the frequency domain, through H/V spectral ratios and spectral ratios with respect to a reference station. A local amplification factor was estimated from Housner intensity. The study revealed a significant seismic amplification in a fault zone. This effect was observed in intensely jointed and mylonitic rock masses, located inside moderately jointed rock masses, and is the result of specific geometries and significant impedance contrasts. A map of fault zones prone to amplification of ground motion was constructed, taking into account the jointing conditions of the rock masses and the structural setting of the investigated ridge. The study relied on an integrated methodological approach, which combined the available data under union and intersection criteria.
    Description: Published
    Description: 416-449
    Description: JCR Journal
    Description: reserved
    Keywords: jointed rock masses ; velocimetric records ; seismic amplification ; trapped waves ; Central Italy ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...