ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions  (9)
  • 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring  (8)
  • Elsevier  (13)
  • AGU  (3)
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2005-2009  (16)
  • 2007  (16)
Collection
Publisher
Years
  • 2005-2009  (16)
Year
  • 1
    Publication Date: 2021-01-25
    Description: The Late Pleistocene Albano Maar hosted the most recent volcanic activity of the Colli Albani Volcanic District, represented at nearvent sections by a thick pyroclastic succession of seven units clustered in two main eruptive cycles dated at around 70–68 and 41–36 ka B.P., respectively. Recent stratigraphic investigations allowed us to recognise a pyroclastic succession comprising four eruptive units widely spread in the northeastern sectors of the Colli Albani volcano, up to 15km eastward from the Albano Maar. Integrated tephrostratigraphic, morpho-pedostratigraphic, archaeological, petrological and geochemical analyses enable us to recognise them as distal deposits of the first, third, fifth and seventh Albano Maar eruptions, enlarging significantly their previously supposed dispersion area. Further tephrostratigraphic studies in central Apennine area, allowed us to identify the Albano Maar products in Late Pleistocene deposits of several intermountain basins, extending still further the dispersion area of distal ash fallout as far as 100–120km from the vent. On the basis of the identification and the study of these previously unrecognised mid-distal Albano Maar deposits, a reappraisal of the eruptive scenarios and related energetic parameters is proposed.
    Description: Published
    Description: 160–178
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Colli Albani ; Albano ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Video surveillance systems are consolidated techniques for monitoring eruptive phenomena in volcanic areas. Along with these systems, which use standard video cameras, people working in this field sometimes make use of infrared cameras providing useful information about the thermal evolution of eruptions. Real-time analysis of the acquired frames is required, along with image storing, to analyze and classify the activity of volcanoes. Human effort and large storing capabilities are hence required to perform monitoring tasks. In this paper we present a new strategy aimed at improving the performance of video surveillance systems in terms of human-independent image processing and storing optimization. The proposed methodology is based on real-time thermo-graphic analysis of the area considered. The analysis is performed by processing images acquired with an IR camera and extracting information about meaningful volcanic events. Two software tools were developed. The first provides information about the activity being monitored and automatically adapts the image storing rate. The second tool automatically produces useful information about the eruptive activity encompassed by a selected frame sequence. The software developed includes a suitable user interface allowing for convenient management of the acquired images and easy access to information about the volcanic activity monitored.
    Description: Published
    Description: 85-91
    Description: reserved
    Keywords: Volcano monitoring ; Image processing ; Smart storing rate ; Eruption data ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 483034 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The horizontal pendulums of the Grotta Gigante (Giant Cave) in the Trieste Karst, are long-base tiltmeters with Z¨ollner type suspension. The instruments have been continuously recording tilt and shear in the Grotta Gigante since the date of their installation by Prof. Antonio Marussi in 1966. Their setup has been completely overhauled several times since installation, restricting the interruptions of the measurements though to a minimum. The continuous recordings, apart from some interruptions, cover thus almost 40 years of measurements, producing a very noticeable long-term tiltmeter record of crustal deformation. The original recording system, still in function, was photographic with a mechanical timing and paper-advancing system, which has never given any problems at all, as it is very stable and not vulnerable by external factors as high humidity, problems in power supply, lightning or similar. In December 2003 a new recording system was installed, based on a solid-state acquisition system intercepting a laser light reflected from a mirror mounted on the horizontal pendulum beam. The sampling rate is 30 Hz, which turns the longbase instrument to a very-broad-band tiltmeter, apt to record the tilt signal on a broad-band of frequencies, ranging from secular deformation rate through the earth tides to seismic waves. Here we describe the acquisition system and present two endline members of the instrumental observation, the up to date long-term recording, and the observation of the great Sumatra-Andaman Islands earthquake of December 26, 2004, seismic moment magnitude Mw = 9.1–9.3 [Lay, T., Kanamori, H., Ammon, C.J., Nettles, M., Ward, S.N., Aster, R.C., Beck, S.L., Bilek, S.L., Brudzinski, M.L., Butler, R., DeShon, H.R., Ekstr¨om, G., Satake, K., Sipkin, S., 2005. The Great Sumatra-Andaman Earthquake of 26 December 2004. Science. 308, 1127–1133.]. The secular-term observations indicate an average tilting over the last four decades towards NW of 23.4 nrad/year. We find evidences that this tilting is regional and has been going on since at least 125 ka. The recent earthquake of December 26, 2004 was well recorded by the pendulums.We show that the free oscillation modes were activated, including the lowest modes as e.g. 0T2, 0T3, 0T4, 0T5 and 2S1, 0S3, 0S4, 1S2.
    Description: Published
    Description: 164-174
    Description: JCR Journal
    Description: reserved
    Keywords: Geodetic underground measurements; ; Secular crustal deformation; ; Free oscillations; ; Ultra-broad-band tiltmeter; ; Sumatra-Andaman 2004 earthquake ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Stromboli is a composite volcano, rising about 2.5 km above the sea floor, whose top lies about 1 km above the sea level forming the northernmost island of the Aeolian Archipelago volcanic arc (Tyrrhenian Sea). On December 28th, 2002, lava flows outpoured from the northern wall of NE crater and come down in the Sciara del Fuoco (SdF), a deep depression that marks the NW flank of the volcano edifice. On December 30th, 2002, two landslides occurred on the northern part of the SdF; it moved a mass in the order of tens of millions of cubic meters both above and below the sea level. The landslide produced a tsunami that causes significant damage on the eastern cost of the island, reaching the others Aeolian Islands and the Sicilian and south Italian coasts. This event lead to the upgrade of the ground deformation monitoring system, already existing on the island; the new requirement was the real-time detection of the deformations related to potential slope failures of the SdF. To this aim, a remotely controlled monitoring system, based both on GPS and topographic techniques was planned and set up in few months. The new monitoring system allowed to continuously measure the ground deformations occurring on the SdF, by integrating both terrestrial topographic and satellite geodetic techniques. Despite this system was severely damaged during the 7-months lasting eruption, it allowed to monitor important eruptive phases. For the first time, an accurate data set about the actual mass movements of the SdF and the crater area was available. It provided data that significantly supported the Civil Protection Authorities in making decisions and constrain the hypothesis about the landslide movements and volcanic activity. After the end of the eruption, the system was reinstated in order to optimize the instruments and to set up a monitoring system aimed at measuring deformations forecasting other flank collapses.
    Description: Dipartimento Nazionale della Protezione Civile
    Description: Published
    Description: 13–31
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Ground deformation ; Real-time monitoring ; Eruption forecasting ; Landslide forecasting ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Tephra fallout represented a major source of hazard for eastern Sicily during the 2001 eruption of Mt. Etna (Italy) between 19 July and 6 August. Long-lasting explosive activity was generated from the 2570 m vent, producing a volcanic plume up to 5 km high above sea level. The eruption caused copious lapilli and ash fallout over the volcano flanks for several days. Flight operations were cancelled at the Catania and Reggio Calabria airports; health risk and economic damage put communities living close to this active volcano on the alert. The explosive activity at the 2570 m vent had three main phases characterized by phreatomagmatic, magmatic and vulcanian explosions. In this paper, we analyze the first explosive phase between 19 and 24 July that formed a tephra deposit on the volcano's south-east flanks. Immediately after the first phase of the eruption, numerous tephra samples were collected in order to draw an isomass map, calculate physical parameters for the eruption and analyze the plume dispersion on the basis of deposit geometry. The tephra deposit shows a bilobate shape due to the change with time of both the vigour of the eruption and the wind direction and velocity that caused a higher rate of particle accumulation along two dispersal axes (SE and SSE). The total mass of tephra erupted was calculated with two different fitting methods: exponential line segments and a power law fit on the semi-logarithmic plot of mass per unit area versus , resulting in values of 1.02 109 kg and 2.31 109 kg, respectively. The whole deposit grain-size was calculated applying the Voronoi tessellation method, it shows a mode of 2 and thus indicates a high degree of magma fragmentation during the first phase of the eruption. Plume dispersal was investigated by an advection–diffusion model to reconstruct the tephra deposit. In the modelling, we took into account the variations of wind direction and velocity, and eruption intensity by dividing the explosive phase into sixteen sub-eruptions and considering the final deposit as the sum of the mass computed for each sub-eruption. Using best fit procedures, we find that the optimal agreement between computed values and field data is obtained by using the total mass calculated with the power law fit and a terminal settling velocity distribution with a particle aggregation model. The computed tephra dispersal was able to reproduce the bilobate shape of the real deposit. This work proves that advection–diffusion models can describe sedimentation processes of weak, i.e., bent-over, long-lasting plumes if the variations of wind direction and velocity, and eruptive intensity are included.
    Description: Published
    Description: 147-164
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; basaltic explosive activity ; violent strombolian eruption ; tephra deposit ; dispersal modelling ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Volcanism at Mount Etna (Italy) has been observed for millennia and inspired ancient mythologies as well as scientific thought through countless generations.Yetmuch of our understanding of the way this volcano works stems fromstudies of the past 20 years, and in particular from strengthened monitoring since the late 1980s. In addition, the eruptive activity of Etna has undergone significant changes during the past 13 years, and these have led to an improved understanding of the relationship between the plumbing system of the volcano and instability of its eastern to southern f lanks. Following the end of the 1991–1993 eruption, a new eruptive cycle began, which so far has produced about 0.23 km3 of lavas and pyroclastics (dense-rock equivalent). The cycle evolved frominitial recharging of the plumbing system and inf lation, followed by powerful summit eruptions and slow spreading of the eastern to southern f lanks, to a sequence of f lank eruptions accompanied by accelerated f lank displacement. Structurally, the volcanic system has become increasingly unstable during this period. Volcanological, geophysical and geochemical data allow the cause–effect and feedback relationships between magma accumulation below the volcano, f lank instability, and the shift from continuous summit activity to episodic f lank eruptions to be investigated. In this scenario, the growth of magma storage areas at a depth of 3–5 km below sea level exerts pressure against those f lank sectors prone to displacement, causing them to detach from the stable portions of the volcanic edifice. Geochemical data indicate that magma remains stored belowthe volcano, even during phases of intense eruptive activity, thus causing a net volumetric increase that is accommodated by f lank displacement. Instability can be enhanced by the forceful uprise ofmagma through the f lanks, as in 2001, when the f irst f lank eruption of the current eruptive cycle took place. Subsequent f lank eruptions in 2002–2003 and 2004– 2004, on the other hand, were, at least in part, facilitated by the opening of fractures at the head of moving f lank sector, although the eruptions were significantly dissimilar from one another. Renewed inflation of the volcano after the 2004–2005 eruption, continued displacement of the unstable f lank sector, and gradual resumption of summit activity in late-2005, demonstrate that the same feedback mechanisms continue to be active, and the Etna system remains highly unstable. The evolution of earlier eruptive cycles shows that a return to a state of relative stability is only possible once a voluminous f lank eruption effectively drains the magmatic plumbing system.
    Description: Published
    Description: 85–114
    Description: reserved
    Keywords: Mount Etna ; eruptive cycle ; volcano monitoring ; seismicity ; deformation ; geochemistry ; structural geology ; magma storage ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2522562 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We investigated the relationships between modelled strain produced by explosive activity through a volcanic conduit, observed paroxystic episodes on Mt. Etna, and high-precision continuous tilt signals recorded during such events from the tilt monitoring network. The tilt changes detected during two different explosive episodes were compared with those calculated from analytical models of ground deformation in order to constrain source properties. The July 22, 1998 subplinian explosion from Voragine crater produced small tilt changes (order of 0.5–1.5 μrad) recorded over the entire volcano edifice, implying a small storage at nearly 2.5 km below sea level. The 1998–2000 period was characterized by tens of spectacular lava fountains from the South-East crater. Very small tilt change (∼ 0.1 μrad) was recorded by a single station on the high north-eastern flank of Mt. Etna and indicated the action of a limited and shallow conduit with 1.5–1.9 km depth. These results provide a contribution to better infer the shallow plumbing system beneath Mt. Etna.
    Description: Published
    Description: 221–234
    Description: reserved
    Keywords: explosive activity ; tilt data ; volcano source modeling ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1124063 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The island of Pantelleria is an active volcano located in the Sicily Channel (Southern Italy), in the middle of a continental rift system. Since the 1980s the island was periodically surveyed by using geodetic techniques (EDM, levelling, GPS and high precise gravimetry) to monitor the regional and local volcanic dynamics. Gravity data, collected between 1990 and 1998, show short and long wavelength changes due to the combined effect of shallow and deep sources. They reflect, to some degree, the structural setting of the island as delineated by the Bouguer anomaly field, which indicates that the island is broken up into two main basement blocks. The latter are bordered by two lineaments, probably regional faults related to the global geodynamics of the Sicily Channel Rift Zone. Moreover, the inverse correlation between the gravity and altimetric variations suggests that: i) Pantelleria is kinematically divided in two blocks; ii) the observed behaviour is strongly influenced by the geodynamics of the Sicily Channel. A new interpretation of the fully reprocessed data sets is presented, focusing on the spatial–temporal features of the horizontal ground deformation and gravity changes compared to the Bouguer anomaly and altimetric data. This leads to conclude that volcanism on the island has been probably strongly influenced by the global geodynamics of the Sicily Channel, and future eruptions are most likely to occur at the structural boundary separating the two blocks.
    Description: Published
    Description: 146– 162
    Description: reserved
    Keywords: Pantelleria ; geodesy ; deformation ; gravity ; volcanism ; geodynamics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 871690 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Tropospheric volcanic plume features have been derived from airborne multispectral images collected during field measurement campaigns at the Mt. Etna volcano in June 1997, during a quiescent period, and in July 2001 during an eruptive period. Results have been obtained in terms of mapping the volcanic aerosol optical thickness (AOT), the A ˚ ngstro¨ m parameters and the water vapor content using different bands from visible to infrared. The AOT values show average values of 0.1 and 1, for quiescent and eruptive plumes, respectively, demonstrating that this geophysical parameter well indicates a major contribution of particulates in the explosive plume with respect to the quiescent one. The mapping of A ˚ ngstro¨ m parameters, in the explosive case, indicates the presence of larger particles and their distribution along the plume, while in the quiescent case indicates the particle size is dominated by small particles with an effective radius about 1 mm. Further in the quiescent case, the map of water vapor shows low values indicating that water vapor emitted condenses mainly in aerosols.
    Description: Published
    Description: 981-994
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna; Volcanic aerosol; Mivis; Radiative transfer model ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: This work deals with the integration of different surveying methodologies for the definition of very accurate Digital Terrain Models (DTM) and/or Digital Surface Models (DSM): in particular, the aerial digital photogrammetry and the terrestrial laser scanning were used to survey the Vesuvio volcano, allowing the total coverage of the internal cone and surroundings (the whole surveyed area was about 3 km×3 km). The possibility to reach a very high precision, especially from the laser scanner data set, allowed a detailed description of the morphology of the volcano. The comparisons of models obtained in repeated surveys allow a detailed map of residuals providing a data set that can be used for detailed studies of the morphological evolution. Moreover, the reflectivity information, highly correlated to materials properties, allows for the measurement and quantification of some morphological variations in areas where structural discontinuities and displacements are present.
    Description: Published
    Description: 123-138
    Description: JCR Journal
    Description: partially_open
    Keywords: Vesuvio; TLS; aerial digital photogrammetry; models; integration ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 5543888 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: The goal of this paper is to describe how continuous gravity measurements can improve the geophysical monitoring of a volcano. Here the experience of 15 yr in continuous gravity on Vesuvius is presented. A wide set of dynamic phenomena (i.e. geodynamics, seismicity, volcanic activity) can produce temporal gravity changes, with a spectrum varying from short (1–10 s) to longer (more than 1 yr) periods. An impending eruption, for instance, is generally associated with the ascent of magma producing changes in the density distribution at depth, and leading to ground deformation and gravity changes observed at surface. The amplitude of such gravity variations is often quite small, on the order of 10 9–10 8 g (10–102 nm/s2; 1–10 AGal), where g is the mean value of normal gravity (9.806 199 203 m/s2), so their detection requires instruments with high sensitivity and stability, providing high quality data. Natural, man-made and instrumental sources are present on the gravity records affecting the Signal to Noise Ratio. Such effects may hide the subtle volcanic signals. The main natural noise is due to ocean–atmosphere dynamics and seismic activity. New approaches to model the instrumental response of mechanical gravity sensors (based on the inter-comparison among superconducting, mechanical and absolute gravimeters) and to investigate the temporal trends of the instrumental sensitivity are proposed. In fact, variations of the calibration factors can be considered the main cause preventing the repeatability of highprecision gravity measurements and inducing phase and amplitude perturbations in recorded gravity signals. A modelling of the background gravity noise level was performed at the Vesuvius station. Moreover, the bfar fieldQ effects produced by large earthquakes on the gravity station have been also investigated. Finally, the time dependent behaviour of the tidal gravimetric factors, the non-stationary components of the gravity field detected at Vesuvius and the results of absolute and relative gravity measurements are interpreted in the framework of its present-day dynamics, mainly characterized by the low level of seismicity, small ground deformation, gravity changes and moderate gas emission.
    Description: Published
    Description: 270– 282
    Description: reserved
    Keywords: Vesuvius ; gravity ; record ; volcanic processes ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 562329 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: On 5 April 2003 at 07:13 GMT (09:13 local time) a violent vulcanian explosion occurred at Stromboli volcano. At the time of the event an eruptive crisis was ongoing at the volcano with a lava flow outpouring along the Sciara del Fuoco flank. The seismic signals related to the event were recorded by 8 permanent broadband stations and gives information about the eruption kinematics. An ultra-longperiod signal (period 〉 20 s), that we interpret as the effect of the ground tilt on the broadband sensors, starts about 4 min before and terminates about 1 min after the explosion. On the basis of the radial pattern of tilt directions we conclude that this signal is the effect of the deformation of the volcanic edifice, due to the rapid rising of a batch of magma, its ejection and the magma column readjustment. About 1 min before the explosion we observe an high frequency signal (period 〈 0.1 s) that we believe to be related to the vesiculation of the rising batch of gas-rich magma. At 07:13:35 GMT a powerful very-long-period signal (period 2 20 s), marking the onset of the explosive fragmentation, is recorded. This is confirmed by a blast wave following few seconds later. The remaining seismic signal (more than 3 min), shows an higher frequency content being related only to the fall of ballistic ejecta and to landslides along Sciara del Fuoco.We propose the implementation of an early warning system for the short-term forecast of such explosions, based on the real-time automatic detection of the tilt signals preceding such events.
    Description: Published
    Description: L08308
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 773734 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Ground deformation occurring on Mount Etna from 1994 to 1995 is analyzed in this paper. This period was characterized by intense volcanic activity at the four summit craters, with frequent strombolian activity, fire fountains, and emplacement of several new lava flows. Four GPS surveys were carried out during this time, two as routinely planned each year and an additional two in 1995 to acquire more data to follow the activity at the NE Crater. The comparisons between GPS surveys are reported in terms of horizontal and vertical displacements of each station and in terms of areal dilatation and principal strain axes. During the period considered in this work, a trend of increasing areal dilatation of the volcano (at a rate of about 5 mstrain/yr) was recognized; it was briefly interrupted by a small contraction (about 2 mstrain), in the autumn of 1995, when volcanic activity at the summit craters began. In detail, the strain distribution of the network is analyzed; it allows the detection of areas showing anomalous behavior, such as the summit zone or the Pernicana fault. Inversions of the ground displacement vectors have been performed by appropriately combining numerical and analytical approaches. Results of the inversions suggest structures defining an eastward and southward sliding of the eastern and southeastern sectors of Mount Etna.
    Description: CNR-GNV "Empedocle" ESA-ESRIN project
    Description: Published
    Description: 2153
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; Ground deformation ; modeling ; Flank instability ; Mt. Etna ; Volcano dynamics ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: The 2001 Etna eruption was characterized by a complex temporal evolution with the opening of seven eruptive fissures, each feeding different lava flows. This work describes a method adopted to obtain the three-dimensional geometry of the whole lava flow field and for the reconstruction, based on topographic data, of the temporal evolution of the largest lava flow emitted from a vent located at 2100 m a.s.l. Preeruption and posteruption Digital Elevation Models (DEM) were extracted from vector contour maps. Comparison of the two DEMs and analysis of posteruption orthophotos allowed us to estimate flow area, thickness, and bulk volume. Additionally, the two-dimensional temporal evolution of the 2100 flow was precisely reconstructed by means of maps compiled during the eruption. These data, together with estimates of flow thickness, allowed us to evaluate emitted lava volumes and in turn the average volumetric flow rates The analysis performed in this paper provided, a total lava bulk volume of 40.1 106 m3 for the whole lava flow field, most of which emitted from the 2100 vent (21.4 106 m3). The derived effusion rate trend shows an initial period of waxing flow followed by a longer period of waning flow. This is in agreement not only with the few available effusion rate measurements performed during the eruption, but also with the theoretical model of Wadge (1981) for the temporal variation in discharge during the tapping of a pressurized source
    Description: Published
    Description: F02029
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; 2001 eruption ; three-dimensional mapping ; lava volume ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-10-18
    Description: We studied the surface deformations affecting the southeastern sector of the Po Plain sedimentary basin, in particular the area of Bologna. To this aim an advanced DInSAR technique, referred to as DInSAR–SBAS (Small BAseline Subset), has been applied. This technique allows monitoring the temporal evolution of a deformation phenomenon, via the generation of mean deformation velocity maps and displacement time series from a data set of acquired SAR images. In particular, we have processed a set of SAR data acquired by the European Remote Sensing Satellite (ERS) sensors and compared the achieved results with optical levelling measurements, assumed as reference. The surface displacements detected by DInSAR SBAS from 1992 to 2000 are between 10 mm/year in the historical part of Bologna town, and up to 59 mm/year in the NE industrial and agricultural areas. Former measurements from optical levelling referred to 1897 show 2–3 mm/year vertical movements. This trend of displacement increased in the second half of the 20th century and the subsidence rate reached 60 mm/year. We compared the more recent levelling campaigns (in 1992 and late 1999) and DInSAR results from 1992 to 1999. The standard deviation of the difference between levelling data, projected onto the satellite Line Of Sight, and DInSAR results is 2 mm/year. This highlights a good agreement between the measurements provided by two different techniques. The explanation of soil movements based on interferometric results, ground data and geological observations, allowed confirming the anthropogenic cause (surface effect due to the overexploitation of the aquifers) and highlights a natural, tectonic, subsidence.
    Description: Published
    Description: 304-316
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: partially_open
    Keywords: InSAR ; surface deformation ; SAR interferometry ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-01-16
    Description: On April 5, 2003, Stromboli volcano (Italy) produced the most violent explosion of the past 50 years. The event was exceptionally well documented thanks to the presence on the island of several scientists and a large number of instruments deployed over the preceding months to monitor the effusive eruption that began in December 2002. Integration of visual documentation, deposit features and geophysical data allowed an accurate reconstruction of the explosive event and its dynamics. The eruption consisted of a 8-min long explosive event which evolved through four phases whose timing was precisely recorded by an infrared thermometer located about 450 m from the summit crater. Phases 2 and 3 lasted 39 and 42 s, respectively. Both had an impulsive character, were responsible for ejecting almost the entire mass of the pyroclastic products. Phases 1 and 4 represented, respectively, a short-lived precursory event and a waning tale. During Phase 2, meter-sized ballistic blocks were launched with velocities of 170 m/s to altitudes of up to 1400 m above the craters. These fell on the volcano flanks and on the village of Ginostra, about 2 km distant from the vent. A vertical jet rose above the craters which developed to feed a convective plume that reached a height of up to 4 km. The calculated mass of the Phase 2 fallout deposit and mass discharge rate were 1.1–1.4×108 kg and 2.8– 3.6×106 kg/s, respectively. During Phase 3 a scoria flow deposit, with an estimated volume of 0.9–1.1×104 m3, was erupted from the same vent that fed the ongoing sustained lava flow. The average mass discharge rate for this phase was 2.5–3.1×105 kg/s. Products emitted during Phases 2 and 3 consisted of lithic and fresh magmatic material in similar proportions. The juvenile fraction consisted of a deep-originated, almost aphyric, highly vesicular pumice mingled with a shallow-derived, crystal-rich, moderately vesicular scoria. Similarities with the eruption dynamics of other historical paroxysms at Stromboli makes the April 5, 2003 explosion representative of these highly energetic events that constitute the most hazardous volcanic phenomena at Stromboli volcano.
    Description: Published
    Description: 594-606
    Description: JCR Journal
    Description: reserved
    Keywords: stromboli ; Thermal monitoring; paroxysm ; explosive dynamics ; ballistic ejecta ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...