ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (238)
  • Astrophysics
  • 2005-2009  (357)
  • 2007  (357)
Collection
Years
  • 2005-2009  (357)
Year
  • 1
    Publication Date: 2019-08-27
    Description: A dual-photoelastic-modulator- (PEM-) based spectropolarimetric camera concept is presented as an approach for global aerosol monitoring from space. The most challenging performance objective is to measure degree of linear polarization (DOLP) with an uncertainty of less than 0.5% in multiple spectral bands, at moderately high spatial resolution, over a wide field of view, and for the duration of a multiyear mission. To achieve this, the tandem PEMs are operated as an electro-optic circular retardance modulator within a high-performance reflective imaging system. Operating the PEMs at slightly different resonant frequencies generates a beat signal that modulates the polarized component of the incident light at a much lower heterodyne frequency. The Stokes parameter ratio q = Q/I is obtained from measurements acquired from each pixel during a single frame, providing insensitivity to pixel responsivity drift and minimizing polarization artifacts that conventionally arise when this quantity is derived from differences in the signals from separate detectors. Similarly, u = U/I is obtained from a different pixel; q and u are then combined to form the DOLP. A detailed accuracy and tolerance analysis for this polarimeter is presented.
    Keywords: Earth Resources and Remote Sensing
    Type: Applied Optics; 46; 35; 8428-8445
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-27
    Description: The local environment where we live within the Earth's biosphere is often taken for granted. This environment can vary depending on whether the land cover is a forest, grassland, wetland, water body, bare soil, pastureland, agricultural field, village, residential suburb, or an urban complex with concrete, asphalt, and large buildings. In general, the type and characteristics of land cover influence surface temperatures, sunlight exposure and duration, relative humidity, wind speed and direction, soil moisture amount, plant life, birds, and other wildlife in our backyards. The physical and biological properties (biophysical characteristics) of land cover help to determine our surface environment because they directly affect surface radiation, heat, and soil moisture processes, and also feedback to regional weather and climate. Depending on the spatial scale and land use intensity, land cover changes can have profound impacts on our local and regional environment. Over the past 350 years, the eastern half of the United States, an area extending from the grassland prairies of the Great Plains to the Gulf and Atlantic coasts, has experienced extensive land cover and land use changes that began with land clearing in the 1600s, led to extensive deforestation and intensive land use practices by 1920, and then evolved to the present-day landscape. Determining the consequences of such land cover changes on regional and global climate is a major research issue. Such research requires detailed historical land cover data and modeling experiments simulating historical climates. Given the need to understand the effects of historical land cover changes in the eastern United States, some questions include: - What were the most important land cover transformations and how did they alter biophysical characteristics of the land cover at key points in time since the mid-1600s? - How have land cover and land use changes over the past 350 years affected the land surface environment including surface weather, hydrologic, and climatic variability? - How do the potential effects of regional human-induced land cover change on the environment compare to similar changes that are caused by the natural variations of the Earth's climate system? To help answer these questions, we reconstructed a fractional land cover and biophysical parameter dataset for the eastern United States at 1650, 1850, 1920, and 1992 time-slices. Each land cover fraction is associated with a biophysical parameter class, a suite of parameters defining the biophysical characteristics of that kind of land cover. This new dataset is designed for use in computer models of land-atmosphere interactions, to understand and quantify the effects of historical land cover changes on the water, energy, and carbon cycles
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-27
    Description: The Earth Science Division supports research projects that exploit the observations and measurements acquired by NASA Earth Observing missions and Applied Sciences projects that extend NASA research to the broader user community and address societal needs.
    Keywords: Earth Resources and Remote Sensing
    Type: Proceedings of the 2006 Civil Commercial Imagery Evaluation Workshop; SSTI-2220-0104
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-27
    Description: Our universe is most luminous at far-infrared and submillimeter wavelengths (100 GHz - 10 THz) after the Cosmic Microwave Background (CMB) radiation. This region of the electromagnetic spectrum provides critical tracers for the study of a wide range of astrophysical and planetary phenomena. This spectral range contains information on the origin of the planets, stars, galaxies, and clusters; the geometry and matter/energy content of the Universe, atmospheric constituents and dynamics of the planets and comets and tracers for global monitoring and the ultimate health of the Earth. Sensors at far-infrared and submillimeter wavelengths provide unprecedented sensitivity for astrophysical, planetary, and earth observing instruments. Very often, for a spaced based platform where the instruments are not limited by atmospheric losses and absorption, the overall instrument sensitivity is dictated by the sensitivity of the sensors themselves. Moreover, some of the cryogenic sensors at submillimeter wavelengths provide almost quantum-limited sensitivity. This paper provides an overview of the submillimeter-wave sensors and their performance and capabilities for space applications.
    Keywords: Astrophysics
    Type: The 2nd International Conference on Sensing Technology; Palmerston North; New Zealand
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-26
    Description: An improved algorithm is developed based on support vector regression (SVR) to estimate horizonal water vapor transport integrated through the depth of the atmosphere ((Theta)) over the global ocean from observations of surface wind-stress vector by QuikSCAT, cloud drift wind vector derived from the Multi-angle Imaging SpectroRadiometer (MISR) and geostationary satellites, and precipitable water from the Special Sensor Microwave/Imager (SSM/I). The statistical relation is established between the input parameters (the surface wind stress, the 850 mb wind, the precipitable water, time and location) and the target data ((Theta) calculated from rawinsondes and reanalysis of numerical weather prediction model). The results are validated with independent daily rawinsonde observations, monthly mean reanalysis data, and through regional water balance. This study clearly demonstrates the improvement of (Theta) derived from satellite data using SVR over previous data sets based on linear regression and neural network. The SVR methodology reduces both mean bias and standard deviation comparedwith rawinsonde observations. It agrees better with observations from synoptic to seasonal time scales, and compare more favorably with the reanalysis data on seasonal variations. Only the SVR result can achieve the water balance over South America. The rationale of the advantage by SVR method and the impact of adding the upper level wind will also be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing of Environment; 112; 1846?1855
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-26
    Description: The large numbers of nucleus fragments observed are a spectacular illustration of the process of cascading fragmentation in progress, a concept introduced to interpret the properties of the Kreutz system of sungrazers and comet D/1993 F2. The objective is to describe the fragmentation sequence and hierarchy of comet 73P, the nature of the fragmentation process and observed events, and the expected future evolution of this comet. The orbital arc populated by the fragments refers to an interval of 3.74 days in the perihelion time. This result suggests that they all could be products (but not necessarily first-generation fragments) of two 1995 events, in early September (involving an enormous outburst) and at the beginning of November. The interval of perihelion times is equivalent to a range of about 2.5 m/s in separation velocity or 0.00012 the Sun's attraction in nongravitational deceleration. Their combined effect suggests minor orbital momentum changes acquired during fragmentation and decelerations compatible with survival over two revolutions about the Sun. Fragment B is a likely first-generation product of one of the 1995 events. From the behavior of the primary fragment C, 73P is not a dying comet, even though fragment B and others were episodically breaking up into many pieces. Each episode began with the sudden appearance of a starlike nucleus condensation and a rapidly expanding outburst, followed by a development of jets, and a gradual tailward extension of the fading condensation, until the discrete masses embedded in it could be resolved. In April-May, this debris traveled first to the southwest, but models show their eventual motion toward the projected orbit. Fainter fragments were imaged over limited time, apparently because of their erratic activity (interspersed with periods of dormancy) rather than improptu disintegration. A dust trail joining the fragments and reminiscent of comet 141P/Machholz suggests that cascading fragmentation exerts itself profoundly over an extremely broad mass range of particulate debris.
    Keywords: Astrophysics
    Type: Proceedings of the International Astronomical Union; 2; Symposium S236; 211-220
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-16
    Description: The last two years have seen incredible development in numerical relativity: from fractions of an orbit, evolutions of an equal-mass binary have reached multiple orbits, and convergent gravitational waveforms have been produced from several research groups and numerical codes. We are now able to move our attention from pure numerics to astrophysics, and address scenarios relevant to current and future gravitational-wave detectors.Over the last 12 months at NASA Goddard, we have extended the accuracy of our Hahn-Dol code, and used it to move toward these goals. We have achieved high-accuracy simulations of black-hole binaries of low initial eccentricity, with enough orbits of inspiral before merger to allow us to produce hybrid waveforms that reflect accurately the entire lifetime of the BH binary. We are extending this work, looking at the effects of unequal masses and spins.
    Keywords: Astrophysics
    Type: APS Meeting; Apr 15, 2007; Jacksonville, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-15
    Description: We present a detailed spectral analysis of the prompt and afterglow emission of four nearby long-soft gamma-ray bursts (GRBs 980425,030329,031203, and 060218) that were spectroscopically found to be associated with Type Ic supernovae and compare them to the general GRB population. For each event, we investigate the spectral and luminosity evolution and estimate the total energy budget based on broadband observations. The observational inventory for these events has become rich enough to allow estimates of their energy content in relativistic and subrelativistic form. The result is a global portrait of the effects of the physical processes responsible for producing long-soft GRBs. In particular, we find that the values of the energy released in mildly relativistic outflows appears to have a significantly smaller scatter than those found in highly relativistic ejecta. This is consistent with a picture in which the energy released inside the progenitor star is roughly standard, while the fraction of that energy that ends up in highly relativistic ejecta outside the star can vary dramatically between different events.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; 654; 385-402
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-14
    Description: This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE International Geoscience and Remote Sensing Symposium (IGARSS); Jul 23, 2007 - Jul 27, 2007; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-14
    Description: The abundance of Li, Be, and B isotopes in galactic cosmic rays (GCR) between E=50-200 MeV/nucleon has been observed by the Cosmic Ray Isotope Spectrometer (CRIS) on NASA's ACE mission since 1997 with high statistical accuracy. Precise observations of Li, Be, B can be used to constrain GCR propagation models. We find that a diffusive reacceleration model with parameters that best match CRIS results (e.g. B/C, Li/C, etc) are also consistent with other GCR observations. A approx. 15-20% overproduction of Li and Be in the model predictions is attributed to uncertainties in the production cross-section data. The latter becomes a significant limitation to the study of rare GCR species that are generated predominantly via spallation.
    Keywords: Astrophysics
    Type: To appear in Journal of Advances in Space Research
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...