ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology
  • Elasticity
  • LUNAR AND PLANETARY EXPLORATION
  • 2005-2009  (3)
  • 1935-1939
  • 2007  (3)
Collection
Years
  • 2005-2009  (3)
  • 1935-1939
Year
  • 1
    Publication Date: 2007-12-22
    Description: Protein molecules have the ability to form a rich variety of natural and artificial structures and materials. We show that amyloid fibrils, ordered supramolecular nanostructures that are self-assembled from a wide range of polypeptide molecules, have rigidities varying over four orders of magnitude, and constitute a class of high-performance biomaterials. We elucidate the molecular origin of fibril material properties and show that the major contribution to their rigidity stems from a generic interbackbone hydrogen-bonding network that is modulated by variable side-chain interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knowles, Tuomas P -- Fitzpatrick, Anthony W -- Meehan, Sarah -- Mott, Helen R -- Vendruscolo, Michele -- Dobson, Christopher M -- Welland, Mark E -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Dec 21;318(5858):1900-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nanoscience Centre, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0FF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18096801" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/*chemistry ; Amyloid beta-Peptides/chemistry ; Chemistry, Physical ; Elasticity ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Insulin/chemistry ; Lactalbumin/chemistry ; Lactoglobulins/chemistry ; Microscopy, Atomic Force ; Models, Molecular ; Muramidase/chemistry ; Nanostructures/*chemistry ; Peptide Termination Factors ; Peptides/*chemistry ; Physicochemical Phenomena ; Prealbumin/chemistry ; Prions/chemistry ; Protein Conformation ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/chemistry ; Surface Tension ; alpha-Crystallin B Chain/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-05-26
    Description: Single-molecule force experiments in vitro enable the characterization of the mechanical response of biological matter at the nanometer scale. However, they do not reveal the molecular mechanisms underlying mechanical function. These can only be readily studied through molecular dynamics simulations of atomic structural models: "in silico" (by computer analysis) single-molecule experiments. Steered molecular dynamics simulations, in which external forces are used to explore the response and function of macromolecules, have become a powerful tool complementing and guiding in vitro single-molecule experiments. The insights provided by in silico experiments are illustrated here through a review of recent research in three areas of protein mechanics: elasticity of the muscle protein titin and the extracellular matrix protein fibronectin; linker-mediated elasticity of the cytoskeleton protein spectrin; and elasticity of ankyrin repeats, a protein module found ubiquitously in cells but with an as-yet unclear function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sotomayor, Marcos -- Schulten, Klaus -- 1 R01 GM073655/GM/NIGMS NIH HHS/ -- P41 RR05969/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1144-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of Illinois at Urbana-Champaign, and Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525328" target="_blank"〉PubMed〈/a〉
    Keywords: Ankyrin Repeat/*physiology ; Computer Simulation ; Connectin ; Elasticity ; Fibronectins/*physiology ; Humans ; Models, Biological ; Muscle Proteins/*physiology ; Protein Kinases/*physiology ; Spectrin/*physiology ; Spectrum Analysis/*methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-01-20
    Description: Cells both actively generate and sensitively react to forces through their mechanical framework, the cytoskeleton, which is a nonequilibrium composite material including polymers and motor proteins. We measured the dynamics and mechanical properties of a simple three-component model system consisting of myosin II, actin filaments, and cross-linkers. In this system, stresses arising from motor activity controlled the cytoskeletal network mechanics, increasing stiffness by a factor of nearly 100 and qualitatively changing the viscoelastic response of the network in an adenosine triphosphate-dependent manner. We present a quantitative theoretical model connecting the large-scale properties of this active gel to molecular force generation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mizuno, Daisuke -- Tardin, Catherine -- Schmidt, C F -- Mackintosh, F C -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):370-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics and Astronomy, Vrije Universiteit, 1081HV Amsterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17234946" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*physiology ; Actins/*physiology ; Adenosine Triphosphate/*metabolism ; Biomechanical Phenomena ; Cytoskeleton/*physiology ; Elasticity ; Mathematics ; *Models, Biological ; Molecular Motor Proteins/*physiology ; Myosin Type II/*physiology ; Rheology ; Stress, Mechanical ; Viscosity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...