ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks  (3)
  • volcanic aerosols  (3)
  • American Geophysical Union  (5)
  • Springer  (1)
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2005-2009  (6)
  • 1970-1974
  • 1940-1944
  • 2007  (6)
Collection
Publisher
Years
  • 2005-2009  (6)
  • 1970-1974
  • 1940-1944
Year
  • 1
    Publication Date: 2017-04-04
    Description: Preliminary results of simultaneous ozone and aerosol lidar measurements taken in the preriod July-early October 1991 are presented. The main problem for retrieving the ozone profile is the correction of the on and off DIAL signials. The backscattering ratio obtained by the off signal is used for this purpose and ozone profile are validated against ozonesonde data. A number ao cases are oresented including a few occasions of layers with large backscattering ratio.
    Description: ING
    Description: Published
    Description: 393-396
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: JCR Journal
    Description: open
    Keywords: volcanic aerosols ; stratospheric ozone ; 01. Atmosphere::01.01. Atmosphere::01.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Two lidar systems, an aerosol lidar and an O$_3 DIfferential Absorption Lidar (DIAL), have been routinely operated at the same site (L'Aquila, Italy; 42°N, 13°E) since August 1991. The multiwavelength analysis of the lidar signals allows to retrieve parameters related to equivalent aerosol size distributions and their optical properties. These are needed to correct the ozone DIAL profiles from the disturbance introduced by the stratospheric volcanic aerosols. The method and the confidence of the retrieved ozone profiles are discussed in a companion paper. Here we present the whole measurement series of ozone and backscattering ratio profiles during the period from August 1991 to December 1992. In addition, for some observations, the mode radius and the dispersion of the representative aerosol size distribution are reported. The time evolutions of aerosol surface area density and mass mixing ratio are also discussed within the uncertainties of the retrieval algorithm.
    Description: ING
    Description: Published
    Description: 2869-2872
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: JCR Journal
    Description: open
    Keywords: volcanic aerosols ; stratospheric ozone ; 01. Atmosphere::01.01. Atmosphere::01.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-03
    Description: A theory, the stress-sensitivity approach, has been developed, which relates the elastic moduli of anisotropic rocks to the stress tensor and pore pressure for an arbitrary symmetry of the applied load. The theory explains the stress-induced changes of seismic velocities in terms of stress-induced changes of the pore space geometry. The stress dependent anisotropy is described in terms of Thomsen’s anisotropy parameters, g and d. To test the theory we analyze the laboratory (high frequency) results of deformation of an isotropically crack damaged dry lava flow basalt from Mt. Etna volcano. The theory states that, under an anisotropic (i.e. axisymmetric triaxial) load and in the case of an initially isotropic rock, (1) the anisotropy parameters are linear functions of the stress exponentials (i. e. exponential functions of principal stress components) and (2) the ratio of these anisotropy parameters as a function of the stress is constant. In order to verify these relationships, the stress exponentials and the anisotropy parameters based on the measured velocities are computed as well as the expected ratio of the Thomsen’s parameters. Our experimental results are in very good agreement with the theoretically predicted relations.
    Description: Published
    Description: L11307
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: rock mechanics applied to volcanoes ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We have deformed basalt from Mount Etna (Italy) in triaxial compression tests under an effective confining pressure representative of conditions under a volcanic edifice (40 MPa), and at a constant strain rate of 5 10 6 s 1. Despite containing a high level of pre-existing microcrack damage, Etna basalt retains a high strength of 475 MPa. We have monitored the complete deformation cycle through contemporaneous measurements of axial strain, pore volume change, compressional wave velocity change and acoustic emission (AE) output. We have been able to follow the complete evolution of the throughgoing shear fault without recourse to any artificial means of slowing the deformation. Locations of AE events over time yields an estimate of the fault propagation velocity of between 2 and 4 mm/s-1. We also find excellent agreement between AE locations and post-test images from X-ray microtomography scanning that delineates deformation zone architecture. Citation: Benson, P. M., B. D. Thompson, P. G. Meredith, S. Vinciguerra, and R. P. Young (2007), Imaging slow failure in triaxially deformed Etna basalt using 3D acoustic-emission location and X-ray computed tomography
    Description: Published
    Description: L03303
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: fault imaging ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Stratospheric aerosol and ozone profiles obtained simoultaneosly from the lidar station at the university of L'Aquila during the first 6 months following the eruption of Mount Pinatubo are compared with corresponding nearby Stratosperic Aerosol and Gas Experiment (SAGE) II profiles. The agreement between the two data stes is found to be reasonably good. The temporal change of aerosol profiles obtained by both technique showed the intrusion and growth of Pinatubo aerosols. In addition, ozone concntration profiles derivide from an empirical time-series model based on SAGE II ozone data obtained bifore the Pinatubo eruption are compared with measured profiles. Good agreement is shown in the 1991 profiles, but ozone concentration measured in January 1992 were reduced relative ti time-series model estimates. Possible reasons for the diffrences between measured and model-based ozone profiles are discussed.
    Description: NASA ING
    Description: Published
    Description: 1881-1884
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: JCR Journal
    Description: open
    Keywords: volcanic aerosols ; ozone ; 01. Atmosphere::01.01. Atmosphere::01.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: More than ca 100 km3 of nearly homogeneous crystal-poor phonolite and ca 100 km3 of slightly zoned trachyte were erupted 39 ka during the Campanian Ignimbrite super eruption, the most powerful in the Neapolitan area. Partition coefficient calculations, equilibrium mineral assemblages, glass compositions and texture were used to reconstruct compositional, thermal and pressure gradients in the pre-eruptive reservoir as well as timing and mechanisms of evolution towards magma chamber overpressure and eruption. Our petrologic data indicate that a wide sill-like trachytic magma chamber was active under the Campanian Plain at 2.5 kbar before CI eruption. Thermal exchange between high liquidus (1199 C) trachytic sill and cool country rocks caused intense undercooling, driving a catastrophic and fast (102 years) in situ fractional crystallization and crustal assimilation that produced a water oversaturated phonolitic cap and an overpressure in the chamber that triggered the super eruption. This process culminated in an abrupt reservoir opening and in a fast single-step high decompression. Sanidine phenocrysts crystal size distributions reveal high differentiation rate, thus suggesting that such a sill-like magmatic system is capable of evolving in a very short time and erupting suddenly with only short-term warning.
    Description: Published
    Description: On line First
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Campanian Ignimbrite ; Super eruption ; Crystal size distribution ; Partition coefficients ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...