ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology  (5)
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
  • Elsevier  (8)
  • American Meteorological Society
  • Institute of Physics
  • 2005-2009  (8)
  • 1980-1984
  • 1970-1974
  • 1925-1929
  • 2007  (8)
Collection
Years
  • 2005-2009  (8)
  • 1980-1984
  • 1970-1974
  • 1925-1929
Year
  • 1
    Publication Date: 2017-04-04
    Description: The development of the 2004–2005 eruption at Etna (Italy) is investigated by means of field surveys to define the current structural state of the volcano. In 2004–2005, a fracture swarm, associated with three effusive vents, propagated downslope from the SE summit crater towards the SE. Such a scenario is commonly observed at Etna, as a pressure increase within the central conduits induces the lateral propagation of most of the dikes downslope. Nevertheless, some unusual features of this eruption (slower propagation of fractures, lack of explosive activity and seismicity, oblique shear along the fractures) suggest a more complex triggering mechanism. A detailed review of the recent activity at Etna enables us to better define this possible mechanism. In fact, the NW–SE-trending fractures formed in 2004–2005 constitute the southeastern continuation of a N–S-trending fracture system which started to develop in early 1998 to the east of the summit craters. The overall 1998–2005 deformation pattern therefore forms an arcuate feature, whose geometry and kinematics are consistent with the head of a shallow flank deformation on the E summit of Etna. Similar deformation patterns have also been observed in analogue models of deforming volcanic cones. In this framework, the 2004–2005 eruption was possibly induced by a dike resulting from the intersection of this incipient fracture system with the SE Crater. A significant acceleration of this flank deformation may be induced by any magmatic involvement. The central conduit of the volcano is presently open, constantly buffering any increase in magmatic pressure and any hazardous consequence can be expected to be limited. A more hazardous scenario may be considered with a partial or total closing of the central conduit. In this case, magmatic overpressure within the central conduit may enhance the collapse of the upper eastern flank, triggering an explosive eruption associated with a landslide reaching the eastern lower slope of the volcano.
    Description: Published
    Description: 195–206
    Description: reserved
    Keywords: eruption triggering ; volcano-tectonics ; fracture fields ; flank spreading ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2594507 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The westernmost part of the Gulf of Corinth (Greece) is an area of very fast extension (~15 mm/yr according to geodetic measurements) and active normal faulting, accompanied by intense coastal uplift and high seismicity. This study presents geomorphic and biological evidence of Holocene coastal uplift at the western extremity of the Gulf, where such evidence was previously unknown. Narrow shore platforms (benches) and rare notches occur mainly on Holocene littoral conglomerates of uplifting small fan deltas. They are perhaps the only primary paleoseismic evidence likely to provide information on earthquake recurrence at coastal faults in the specific part of the Rift system, whereas dated marine fauna can provide constraints on average Holocene coastal uplift rate. The types of geomorphic and biological evidence identified are not ideal, and there are limitations and pitfalls involved in their evaluation. In a first approach, 5 uplifted paleoshorelines may be indentified, at 0.4- 0.7, 1.0-1.3, 1.4-1.7, 2.0-2.3 and 2.8-3.4 m a.m.s.l. They probably formed after 1728 or 2250 Cal. B.P. (depending on the marine reservoir correction used in the calibration of measured radiocarbon ages). A most conservative estimate for the average coastal uplift rate during the Late Holocene is 1.6 or 1.9 mm/yr minimum (with different amounts of reservoir correction). Part of the obtained radiocarbon ages of Lithophaga sp. allows for much higher Holocene uplift rates, of the order of 3-4 mm/yr, which cannot be discarded given that similar figures exist in the bibliography on Holocene and Pleistocene uplift at neighbouring areas. They should best be cross-checked by further studies though. That the identified paleoshoreline record corresponds to episodes of coastal uplift only, cannot be demonstrated beyond all doubt by independent evidence, but it appears the most likely interpretation, given the geological and active-tectonic context and, what is known about eustatic sea-level fluctuations in the Mediterranean. Proving that the documented uplifts were abrupt (i.e., arguably coseismic), is equally difficult, but reasonably expected and rather probable. Five earthquakes in the last ca. 2000 yrs on the coastal fault zone responsible for the uplift, compare well with historical seismicity and the results of recent on-fault paleoseismological studies at the nearby Eliki fault zone. Exact amounts of coseismic uplift cannot be determined precisely, unless the rate of uniform ("regional") non-seismic uplift of Northern Peloponnesus at the specific part of the Corinth Rift is somehow constrained.
    Description: EU project 3HAZ-Corinth
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Holocene Shorelines ; Coastal tectonics ; Paleoseismology ; Uplift ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Geological and structural analyses and ground deformation measurements performed along the eastern portion of the Pernicana fault system and its splay segments allow the structural setting and the kinematic behaviour of the fault to be defined. In addition, the interrelationship between the deformation style of fault segments and the variations of the volcanic pile thickness along the fault strike are investigated using detailed sedimentary basement data. Brittle deformation dominates the N105° fault segment, where the volcanic pile is more than 200 m thick, with the development of a well-defined fault plane characterised by main left-lateral kinematics. The transtensive deformation of the N105° fault is partitioned eastward at Rocca Campana to a main N120° segment. Here, this segment crosses a culmination of the sedimentary basement close to Vena village where the deformation pattern of the thin volcanic pile, less than 100 m thick, is influenced by the more ductile behaviour of the basement generating local short structures with different orientation and kinematics in the southern block of the fault. On the northern one, short E–W trending faults show left-lateral displacements with a minor reverse component on south-dipping planes. This kinematics is related to the oblique orientation of the N120° segment with respect to the seaward motion of the NE flank of Etna. On the whole, the compressive component of the deformation affecting the N120° segment of the Pernicana fault system generates a positive flower structure.
    Description: Published
    Description: 210-232
    Description: JCR Journal
    Description: reserved
    Keywords: faults ; ground deformation ; Mt. Etna ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2898298 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Eight cases of large-scale gravitational movements (with evidence of rock-slide type displacements) evolving close to Quaternary faults have been analysed in the Central Apennines. Geomorphological and structural surveys have defined the relationship between the gravitational displacements and the tectonically-controlled modifications of the landscape. The evolution of all the investigated cases has been conditioned by the presence of fault planes located along the mountain slopes. In most cases (Mt. Cefalone, Cima della Fossa, Villavallelonga, Casali d'Aschi, Gioia dei Marsi), the faults played or are playing a primary role in increasing the local relief and their activity represents the main geomorphic factor conditioning the gravitational movements. This kind of relationship has been observed along mountain slopes bordering depressions which have not been drained for most of their geomorphic history or have been characterised by an evolution of the hydrographic network that has been conditioned only by the local tectonic subsidence. In such cases, the gravitational movements develop in the footwalls of the faults. In other cases (Fiamignano, Pescasseroli) the faults have played a passive role, since they only bound the sliding masses and coincide with the surficial expressions of the sliding planes. Therefore, the gravitational displacements develop in the hangingwall of the faults. The evolution is conditioned by the incision of the hydrographic network in response to regional Quaternary uplift. The illustrated case studies provide a wide range of examples of the gravitational response of slopes to the modifications of the landscape due to linear and areal tectonics. The identification of the geomorphic traces of the large-scale gravitational movements along fault-controlled mountain fronts has implications for hazard, particularly for the evolution of the displacement. The quantitative analysis of the vertical displacements and data on the characteristics of the surface breaking during historical earthquakes demonstrate that along-fault offsets strongly increases where the unstable large-scale rock masses are located. Therefore, the large coseismic vertical offset may represent a major problem for the displacement of utilities and may represent a potential cause for the sudden and catastrophic evolution of the gravitational movement.
    Description: Published
    Description: 201-228
    Description: JCR Journal
    Description: reserved
    Keywords: Active tectonics ; Normal faulting ; Large-scale gravitational deformation ; Rock slide ; Natural hazard ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The westernmost part of the Gulf of Corinth (Greece) is an area of very fast extension (~15 mm/yr according to geodetic measurements) and active normal faulting, accompanied by intense coastal uplift and high seismicity. This study presents geomorphic and biological evidence of Holocene coastal uplift at the western extremity of the Gulf, where such evidence was previously unknown. Narrow shore platforms (benches) and rare notches occur mainly on Holocene littoral conglomerates of uplifting small fan deltas. They are perhaps the only primary paleoseismic evidence likely to provide information on earthquake recurrence at coastal faults in the specific part of the Rift system, whereas dated marine fauna can provide constraints on average Holocene coastal uplift rate. The types of geomorphic and biological evidence identified are not ideal, and there are limitations and pitfalls involved in their evaluation. In a first approach, 5 uplifted paleoshorelines may be indentified, at 0.4- 0.7, 1.0-1.3, 1.4-1.7, 2.0-2.3 and 2.8-3.4 m a.m.s.l. They probably formed after 1728 or 2250 Cal. B.P. (depending on the marine reservoir correction used in the calibration of measured radiocarbon ages). A most conservative estimate for the average coastal uplift rate during the Late Holocene is 1.6 or 1.9 mm/yr minimum (with different amounts of reservoir correction). Part of the obtained radiocarbon ages of Lithophaga sp. allows for much higher Holocene uplift rates, of the order of 3-4 mm/yr, which cannot be discarded given that similar figures exist in the bibliography on Holocene and Pleistocene uplift at neighbouring areas. They should best be cross-checked by further studies though. That the identified paleoshoreline record corresponds to episodes of coastal uplift only, cannot be demonstrated beyond all doubt by independent evidence, but it appears the most likely interpretation, given the geological and active-tectonic context and, what is known about eustatic sea-level fluctuations in the Mediterranean. Proving that the documented uplifts were abrupt (i.e., arguably coseismic), is equally difficult, but reasonably expected and rather probable. Five earthquakes in the last ca. 2000 yrs on the coastal fault zone responsible for the uplift, compare well with historical seismicity and the results of recent on-fault paleoseismological studies at the nearby Eliki fault zone. Exact amounts of coseismic uplift cannot be determined precisely, unless the rate of uniform ("regional") non-seismic uplift of Northern Peloponnesus at the specific part of the Corinth Rift is somehow constrained.
    Description: European Community project 3HAZ-Corinth
    Description: Published
    Description: on line first
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Coastal fault zone ; Shore platforms ; Holocene shorelines ; Paleoseismology ; Coastal uplift ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-03
    Description: Veins are the geologic record of fluids that filled fractures at depth in the crust. In southern Tuscany (Italy), well-exposed Oligocene–Early Miocene sandstones hosting vein systems provide insight into the role of pore fluid and the stress state at the time of vein formation. The stress ratio (Φ = (σ2 − σ3)/(σ1 − σ3)) and driving stress ratio (R ′ = (Pf − σ3)/(σ1 − σ3)) were determined by analysing the distribution, length and aperture of fractures and veins and the magnitude of fluid overpressure. The derived fluid overpressure for the whole vein system ranges from 30 MPa to 64 MPa, with an average of 43 MPa; these values indicate that veins formed under supra-hydrostatic pressure conditions. Despite their spatial contiguity, two different vein arrays show very different stress and driving pressure ratios. One vein system is characterised by Φ = 0.62 and R ′ = 0.60, the other by Φ = 0.54 and R ′ = 0.78. The described vein systems are an example of a close spatial association of two non-hydraulically connected vein systems representing fluids focused through the upper crust.
    Description: Published
    Description: 1386-1399
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Fracture systems ; Vein systems ; Fluid overpressure ; Sandstones ; Tuscany ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We describe the recent activity of the Cayambe-Afiladores-Sibundoy Fault (CASF) and recognise it as one of the major potential active structures of northwestern South America, based on field observations, stereoscopic aerial photos of offset late Pleistocene-Holocene deposits and landforms, and crustal seismic activity. The CASF runs for at least 270 km along the sub-Andean zone of northern Ecuador and southern Colombia. We measured systematic latest Pleistocene-Holocene right-lateral strike-slip motion and right-lateral reverse motion consistent with earthquake focal mechanism solutions, and estimated a 7.7 +/- 0.4 to 11.9 +/- 0.7 mm/yr slip-rate. Magnitudes of the earthquakes that could be generated by possible fault-segment reactivation range up to M 7.0 +/- 0.1. The CASF should be considered as a major source of possible future large magnitude earthquakes, presenting a seismic hazard for the densely populated regions to the west. The CASF is part of the tectonic boundary of the North Andean block escaping NNE-wards with respect to the stable South American plate.
    Description: Published
    Description: 664-680
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Active fault ; Seismicity ; Slip-rate calculation ; Colombia ; Ecuador ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-12-05
    Description: The Pergola-Melandro basin (southern Apennines) is characterized by a below-average release of seismic energy within a wider earthquake-prone region. In fact, it is placed between the maximum intensity areas of two of the most destructive earthquakes reported in the Italian seismic catalogue: theM≥7.0 Agri Valley earthquake in 1857 and the Ms = 6.9 Irpinia earthquake in 1980. In thiswork, we present geomorphologic analysis, electrical resistivity surveys and field data, including paleoseismologic evidence, that provided the first direct constraints on the presence of a∼20 kmlong, seismogenic fault at the western border of the Pergola-Melandro basin. We also obtained geological information on the recent deformation history of the Pergola-Melandro fault that indicates the occurrence of at least four surface faulting earthquakes since Late Pleistocene age. The empirical relationships linking fault length and magnitude would assign to the Pergola-Melandro fault an event of M≥6.5. These new data have important implication on the seismic hazard assessment of this sector of the Apennines, that also includes large cities such as Potenza, about 20 km far from the recognized Pergola-Melandro fault, and highlight the relevance of the geological approach in areas where the seismological records are poor. Finally, we discuss the Pergola-Melandro fault within the regional seismotectonic context. In particular, this fault belongs to the system of normal faults with an apenninic orientation, both NE and SW dipping, accommodating the NE-crustal extension taking place in the area. Nearby faults, similarly oriented but with opposite dip, may coexist whether linked by secondary faults that act as slip transfer structures. This complex system of active faults would be more realistic than a narrow band of faults running along the belt axis with an homogenous geometry, and moreover, it is more consistent with the high extension rate measured by historical earthquakes and geodetic data.
    Description: funded by the National Group for Protection against Earthquakes
    Description: Published
    Description: 19–32
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Southern Apennines ; Seismogenic fault ; Surface faulting ; Seismic hazard ; Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...