ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Mt. Etna  (10)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics  (7)
  • Elsevier  (11)
  • Springer-Verlag  (4)
  • Springer  (1)
  • Blackwell Publishing Ltd
  • Elsevier Science Limited
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2010-2014
  • 2005-2009  (16)
  • 2007  (16)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 2010-2014
  • 2005-2009  (16)
Jahr
  • 1
    Publikationsdatum: 2017-04-04
    Beschreibung: The development of the 2004–2005 eruption at Etna (Italy) is investigated by means of field surveys to define the current structural state of the volcano. In 2004–2005, a fracture swarm, associated with three effusive vents, propagated downslope from the SE summit crater towards the SE. Such a scenario is commonly observed at Etna, as a pressure increase within the central conduits induces the lateral propagation of most of the dikes downslope. Nevertheless, some unusual features of this eruption (slower propagation of fractures, lack of explosive activity and seismicity, oblique shear along the fractures) suggest a more complex triggering mechanism. A detailed review of the recent activity at Etna enables us to better define this possible mechanism. In fact, the NW–SE-trending fractures formed in 2004–2005 constitute the southeastern continuation of a N–S-trending fracture system which started to develop in early 1998 to the east of the summit craters. The overall 1998–2005 deformation pattern therefore forms an arcuate feature, whose geometry and kinematics are consistent with the head of a shallow flank deformation on the E summit of Etna. Similar deformation patterns have also been observed in analogue models of deforming volcanic cones. In this framework, the 2004–2005 eruption was possibly induced by a dike resulting from the intersection of this incipient fracture system with the SE Crater. A significant acceleration of this flank deformation may be induced by any magmatic involvement. The central conduit of the volcano is presently open, constantly buffering any increase in magmatic pressure and any hazardous consequence can be expected to be limited. A more hazardous scenario may be considered with a partial or total closing of the central conduit. In this case, magmatic overpressure within the central conduit may enhance the collapse of the upper eastern flank, triggering an explosive eruption associated with a landslide reaching the eastern lower slope of the volcano.
    Beschreibung: Published
    Beschreibung: 195–206
    Beschreibung: reserved
    Schlagwort(e): eruption triggering ; volcano-tectonics ; fracture fields ; flank spreading ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 2594507 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-04
    Beschreibung: In this paper, we discuss the possibility that the North Anatolian fault (NAF) results from the deep deformation of the slab beneath the Bitlis–Hellenic subduction zone. We described the tectonic evolution of the Anatolia–Aegean area in three main steps, before, during and after the formation of the NAF. We remark that the tectonic conditions that are assumed to have triggered the formation of the NAF, i.e. collision to the east and extension to the west, was already achieved before the onset of that strike-slip fault system. We also highlight that the formation of the NAF was accompanied by the uplift of the Turkish–Iranian plateau and by a surge of volcanism in the eastern Anatolia collisional area and probably by the acceleration of the Aegean trench retreat. We show tomographic images from global P-wave model of Piromallo and Morelli [C. Piromallo, A. Morelli, P wave tomography of the mantle under the Alpine–Mediterranean area, J. Geophys. Res. 108 (2003) doi: 10.1029/2002JB001757.] showing that the slab beneath the Bitlis collisional belt is not continuous and that its possible rupture pursues to the west at least up to Cyprus and possibly up to the eastern end of the Hellenic trench. All these observations suggest that the plate tectonic re-organization occurred in the Late Miocene–Early Pliocene in the region results from slab break-off in the Bitlis area and from its lateral propagation to the West. This idea is tested in analogue laboratory experiments, which confirm that the break of the slab under the collisional belt may trigger, (1) the acceleration of slab retreat to the west due to the increase in slab pull force, (2) the indentation of the continent in the collisional area and (3) produce the conditions that permit the lateral escape of material towards the west and the formation of the NAF.
    Beschreibung: Published
    Beschreibung: 85-97
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Mediterranean ; subduction ; collision ; analogue experiments ; seismic tomography ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-04-04
    Beschreibung: The Lower Paleozoic assemblages in the E. Meditterranean comprise a Southern (Tauride-Anatolide,SE Anatolia and Central Iranian terranes) and a Northern (Carpathian-Balkan, Istanbul, Zonguldak and the Main Range terranes) Zone. A detailed stratigrapic account is given for these terranes for the Early Paleozoic and their paleogeographical settings are discussed to evaluate the Early Paleozoic geodynamic interpretation of this critical area between Gondwana-Perigondwana and Laurussia..
    Beschreibung: Published
    Beschreibung: 315-323
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): Palaeozoic, evolution, Turkey ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-04-04
    Beschreibung: Geological and structural analyses and ground deformation measurements performed along the eastern portion of the Pernicana fault system and its splay segments allow the structural setting and the kinematic behaviour of the fault to be defined. In addition, the interrelationship between the deformation style of fault segments and the variations of the volcanic pile thickness along the fault strike are investigated using detailed sedimentary basement data. Brittle deformation dominates the N105° fault segment, where the volcanic pile is more than 200 m thick, with the development of a well-defined fault plane characterised by main left-lateral kinematics. The transtensive deformation of the N105° fault is partitioned eastward at Rocca Campana to a main N120° segment. Here, this segment crosses a culmination of the sedimentary basement close to Vena village where the deformation pattern of the thin volcanic pile, less than 100 m thick, is influenced by the more ductile behaviour of the basement generating local short structures with different orientation and kinematics in the southern block of the fault. On the northern one, short E–W trending faults show left-lateral displacements with a minor reverse component on south-dipping planes. This kinematics is related to the oblique orientation of the N120° segment with respect to the seaward motion of the NE flank of Etna. On the whole, the compressive component of the deformation affecting the N120° segment of the Pernicana fault system generates a positive flower structure.
    Beschreibung: Published
    Beschreibung: 210-232
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): faults ; ground deformation ; Mt. Etna ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 2898298 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2017-04-04
    Beschreibung: Several sites with anomalous emissions of carbon dioxide were investigated in the region south of Mt. Etna volcano in order to assess the types of emission (focused and/or diffuse), their surface extension and the total output of CO2. Most of the studied emissions are located on the southwest boundary of Mt. Etna, near the town of Paternò. They consist of three mud volcanoes (known as Salinelle), one spring with bubbling gas (Acqua Grassa) and one area of diffuse degassing (Peschería). Another site (Naftía Lake) with remarkable gas emissions (bubbling gas into a lake as well as adjacent areas of diffuse soil degassing) is located further southwest of Mt. Etna in an area of extinct Quaternary volcanism on the northwest margin of Hyblean Mts. In all of these areas the origin of the highest CO2 emissions is clearly magmatic, and degassing to the atmosphere occurs mostly through tectonic structures, probably at a regional scale. The magmatic source that feeds anomalous degassing in the above areas is likely to be the same that feeds volcanic activity at Mt. Etna. Focused degassing was measured at each emission vent using devices that measure the air speed, whereas diffuse soil degassing was measured using the accumulation chamber method. In total, 712 measurements were carried out (146 in focused degassing vents, 566 on diffuse degassing areas). Single CO2 output values ranged from 1.8 10−5 to 1.68 kg s−1. In the case of diffuse degassing areas, statistical analyses allowed to discriminate between biogenic CO2 and CO2 deriving from a magmatichydrothermal source. Only the efflux values from the latter source were considered in the output estimates. The total estimated output thus obtained was about 2.61 kg s−1, relevant to a total surface of about 146,500 m2 (which includes only the magmatic CO2 emissions). This value is comparable with that of most non-volcanic emissions from geothermal and/or faulted areas of centralsouthern Italy, as well with the CO2 output from some of the volcanic areas of Italy.
    Beschreibung: Istituto Nazionale di Geofisica e Vulcanologia; Dipartimento per la Protezione Civile.
    Beschreibung: Published
    Beschreibung: 46–63
    Beschreibung: 4.5. Degassamento naturale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Mt. Etna ; mud volcanoes ; soil CO2 effluxes ; magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2017-04-04
    Beschreibung: The sustained and uninterrupted plume degassing at Mount Etna volcano, Southern Italy, represents the troposphere’s most prominent natural source of fluorine. Of the ~ 200 Mg of fluorine (as HFg) emitted daily by the volcano, 1.6±2.7 Mg are deposited by wet and dry deposition. Fluorine-deposition via volcanic ash, here characterised for the first time, can be quite significant during volcanic eruptions (i.e. 60 Mg of fluorine were deposited during the 2001 eruption through volcanic ash, corresponding to ~ 85% of the total fluorine deposition). Despite the fact that these depositions are huge, the fate of the deposited fluorine and its impact on the environment are poorly understood. We herein present original data on fluorine abundance in vegetation (Castanea Sativa and Pinus Nigra) and andosoils from the volcano’s flank, in the attempt to reveal the potential impact of volcanogenic fluorine emissions. Fluorine contents in chestnut leaves and pine needles are in the range 1.8-35 µg/g and 2.1-74 µg/g respectively; they exceed the typical background concentrations in plants growing in rural areas, but fall within the lower range of typical concentrations in plants growing near high fluorine anthropogenic emission sources. The rare plume fumigations on the lower flanks of Mt Etna (distance 〉 4 km from summit craters) are probably the cause of the “undisturbed” nature of Etnean vegetation: climatic conditions, which limit the growth of vegetation on the upper regione deserta, are a natural limit to the development of more severe impacts. High fluorine contents, associated with visible symptoms, were only measured in pine needles at three sites, located near recently-active (2001 to 2003) lateral eruptive fractures. Total fluorine contents (FTOT) in the Etnean soils have a range of 112-341 µg/g, and fall within the typical range of undisturbed soils; fluorine extracted with distilled water (FH2O) have a range of 5.1 to 61 µg/g and accounts for 2-40 % of FTOT. FH2O is higher in topsoils from the eastern flank (downwind), while it decreases with depth in soil profiles and on increasing soil grain size (thereby testifying to its association with clay-mineral-rich, fine soil fractions). The fluorine adsorption capacity of the andosoils acts as a natural barrier that protects the groundwater system.
    Beschreibung: Published
    Beschreibung: 87-101
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 4.5. Degassamento naturale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Mt. Etna ; Fluorine ; environmental volcanology ; impact of volcanic F ; soils ; vegetation ; volcanic ash ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2017-04-04
    Beschreibung: Microgravity observations at Mt. Etna have been routinely performed as both discrete (since 1986) and continuous (since 1998) measurements. In addition to describing the methodology for acquiring and reducing gravity data from Mt. Etna, this paper provides a collection of case studies aimed at demonstrating the potential of microgravity to investigate the plumbing system of an active volcano and detect forerunners to paroxysmal volcanic events. For discrete gravity measurements, results from 1994– 1996 and 2001 are reported. During the first period, the observed gravity changes are interpreted within the framework of the Strombolian activity which occurred from the summit craters. Gravity changes observed during the first nine months of 2001 are directly related to subsurface mass redistributions which preceded, accompanied and followed the July-August 2001 flank eruption of Mt. Etna. Two continuous gravity records are discussed: a 16-month (October 1998 to February 2000) sequence and a 48-hour (26–28 October, 2002) sequence, both from a station within a few kilometers of the volcano’s summit. The 16-month record may be the longest continuous gravity sequence ever acquired at a station very close to the summit zone of an active volcano. By cross analyzing it with contemporaneous discrete observations along a summit profile of stations, both the geometry of a buried source and its time evolution can be investigated. The shorter continuous sequence encompasses the onset of an eruption from a location only 1.5 km from the gravity station. This gravity record is useful for establishing constraints on the characteristics of the intrusive mechanism leading to the eruption. In particular, the observed gravity anomaly indicates that the magma intrusion occurred ‘‘passively’’ within a fracture system opened by external forces.
    Beschreibung: Published
    Beschreibung: 769-790
    Beschreibung: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Mt. Etna ; microgravity ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2017-04-04
    Beschreibung: After the major 19911993 eruption, Mt. Etna resumed flank activity in July 2001 through a complex system of eruptive fissures cutting the NE and the S flanks of the volcano and feeding effusive activity, fire fountains, Strombolian and minor phreatomagmatic explosions. Throughout the eruption, magmas with different petrography and composition were erupted. The vents higher than 2,600 m a.s.l. (hereafter Upper vents, UV) erupted porphyritic, plagioclase-rich trachybasalt, typical of present-day summit and flank activity. Differently, the vents located at 2,550 and 2,100 m a.s.l. (hereafter Lower vents, LV) produced slightly more primitive trachybasalt dominated by large clinopyroxene, olivine and uncommon minerals for Etna such as amphibole, apatite and orthopyroxene and containing siliceous and cognate xenoliths. Petrologic investigations carried out on samples collected throughout the eruption provided insights into one of the most intriguing aspects of the 2001 activity, namely the coeval occurrence of distinct magmas. We interpret this evidence as the result of a complex plumbing system. It consists in two separate magma storage systems: a shallow one feeding the activity of the UV and a deeper and more complex storage related to the activity of LV. In this deep storage zone, which is thermally and compositionally zoned, the favourable conditions allow the crystallization of amphibole and the occurrence of cognate xenoliths representing wall cumulates. Throughout 2001 eruption, UV and LV magmas remain clearly distinct and ascended following different paths, ruling out the occurrence of mixing processes between them. Furthermore, integrating the 2001 eruption in the framework of summit activity occurring since 1995, we propose that the 2001 magma feeding the vents lower than 2,600 m a.s.l. is a precursor of a refilling event, which reached its peak during the 20022003 Etna flank eruption.
    Beschreibung: Published
    Beschreibung: 401-421
    Beschreibung: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Mt. Etna ; Flank eruption ; Amphibole ; Xenoliths ; Petrologic monitoring ; Plumbing system ; Eruption dynamics ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2017-04-04
    Beschreibung: We provide new data on relative sea-level change from the late Holocene for two locations in the central Mediterranean: Sardinia and NE Adriatico. They are based on precise measures of submerged archaeological and tide notch markers that are good indicators of past sea-level elevation. Twelve submerged archaeological sites were studied: six, aged between 2.5 and 1.6 ka BP, located along the Sardinia coast, and a further six, dated 2.0 ka BP, located along the NE Adriatic coast (Italy, Slovenia and Croatia). For Sardinia, we also use beach rock and core data that can be related to Holocene sea level. The elevations of selected significant archaeological markers were measured with respect to the present sea level, applying corrections for tide and atmospheric pressure values at the time of surveys. The interpretation of the functional heights related to sea level at the time of their construction provides data on the relative changes between land and sea; these data are compared with predictions derived from a new glacio–hydro-isostatic model associated with the Last Glacial cycle. Sardinia is tectonically relatively stable and we use the sea-level data from this island to calibrate our models for eustatic and glacio–hydro-isostatic change. The results are consistent with those from another tectonically stable site, the Versilia Plain of Italy. The northeast Adriatic (Italy, Slovenia and Croatia) is an area of subsidence and we use the calibrated model results to separate out the isostatic from the tectonic contributions. This indicates that the Adriatic coast from the Gulf of Trieste to the southern end of Istria has Q1 tectonically subsided by 1.5m since Roman times.
    Beschreibung: Published
    Beschreibung: 2463-2486
    Beschreibung: 3.3. Geodinamica e struttura dell'interno della Terra
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): sea level, archaeology, tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-04-04
    Beschreibung: Tephra fallout represented a major source of hazard for eastern Sicily during the 2001 eruption of Mt. Etna (Italy) between 19 July and 6 August. Long-lasting explosive activity was generated from the 2570 m vent, producing a volcanic plume up to 5 km high above sea level. The eruption caused copious lapilli and ash fallout over the volcano flanks for several days. Flight operations were cancelled at the Catania and Reggio Calabria airports; health risk and economic damage put communities living close to this active volcano on the alert. The explosive activity at the 2570 m vent had three main phases characterized by phreatomagmatic, magmatic and vulcanian explosions. In this paper, we analyze the first explosive phase between 19 and 24 July that formed a tephra deposit on the volcano's south-east flanks. Immediately after the first phase of the eruption, numerous tephra samples were collected in order to draw an isomass map, calculate physical parameters for the eruption and analyze the plume dispersion on the basis of deposit geometry. The tephra deposit shows a bilobate shape due to the change with time of both the vigour of the eruption and the wind direction and velocity that caused a higher rate of particle accumulation along two dispersal axes (SE and SSE). The total mass of tephra erupted was calculated with two different fitting methods: exponential line segments and a power law fit on the semi-logarithmic plot of mass per unit area versus , resulting in values of 1.02 109 kg and 2.31 109 kg, respectively. The whole deposit grain-size was calculated applying the Voronoi tessellation method, it shows a mode of 2 and thus indicates a high degree of magma fragmentation during the first phase of the eruption. Plume dispersal was investigated by an advection–diffusion model to reconstruct the tephra deposit. In the modelling, we took into account the variations of wind direction and velocity, and eruption intensity by dividing the explosive phase into sixteen sub-eruptions and considering the final deposit as the sum of the mass computed for each sub-eruption. Using best fit procedures, we find that the optimal agreement between computed values and field data is obtained by using the total mass calculated with the power law fit and a terminal settling velocity distribution with a particle aggregation model. The computed tephra dispersal was able to reproduce the bilobate shape of the real deposit. This work proves that advection–diffusion models can describe sedimentation processes of weak, i.e., bent-over, long-lasting plumes if the variations of wind direction and velocity, and eruptive intensity are included.
    Beschreibung: Published
    Beschreibung: 147-164
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Mt. Etna ; basaltic explosive activity ; violent strombolian eruption ; tephra deposit ; dispersal modelling ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2017-04-04
    Beschreibung: We investigated the relationships between modelled strain produced by explosive activity through a volcanic conduit, observed paroxystic episodes on Mt. Etna, and high-precision continuous tilt signals recorded during such events from the tilt monitoring network. The tilt changes detected during two different explosive episodes were compared with those calculated from analytical models of ground deformation in order to constrain source properties. The July 22, 1998 subplinian explosion from Voragine crater produced small tilt changes (order of 0.5–1.5 μrad) recorded over the entire volcano edifice, implying a small storage at nearly 2.5 km below sea level. The 1998–2000 period was characterized by tens of spectacular lava fountains from the South-East crater. Very small tilt change (∼ 0.1 μrad) was recorded by a single station on the high north-eastern flank of Mt. Etna and indicated the action of a limited and shallow conduit with 1.5–1.9 km depth. These results provide a contribution to better infer the shallow plumbing system beneath Mt. Etna.
    Beschreibung: Published
    Beschreibung: 221–234
    Beschreibung: reserved
    Schlagwort(e): explosive activity ; tilt data ; volcano source modeling ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 1124063 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2017-04-04
    Beschreibung: Travertine deposits outcropping in the lower SW flank of Mt. Etna were studied for their mapping, as well as for their chemical, mineralogical and isotopic compositions. These deposits are dated to about 24 to 5 ka in the Adrano area, located at the western limit of the study area. In this area travertines show high Mg contents and are composed mostly of dolomite, thus apparently ruling out any primary deposition in favour of a diagenetic origin. Travertines outcropping near Paternò, in the east part of the study area, should be younger than 18 ka. Those located to the SSW of Paternò (Paternò–Diga) show high Sr contents and aragonite as dominant mineralogical phase, thus suggesting primary deposition. Those located to the Wof Paternò (Paternò Simeto–Stazione) are instead poor both in Mg and in Sr and show calcite as dominant phase. Carbon isotope composition of travertines indicates a magmatic origin of CO2 that formed them. Based on the estimated volume of travertines, between 10 and 20 Gg/a of CO2 were involved in their formation. The time-span of travertine formation coincided with the eruptive cycles of Ellittico and the first part of Mongibello, which were probably characterised by a greater amount of CO2 transported through groundwater circulation. Widespread travertine deposition probably ceased after the opening of the Valle del Bove depression that modified the volcanologic and hydrologic conditions in the summit crater area.
    Beschreibung: Istituto Nazionale di Geofisica e Vulcanologia
    Beschreibung: Published
    Beschreibung: 64–70
    Beschreibung: 4.5. Degassamento naturale
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): Mt. Etna ; travertine deposits ; carbon isotope composition ; mineralogical composition ; chemical composition ; CO2 budget ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2017-04-03
    Beschreibung: In the text
    Beschreibung: Published
    Beschreibung: 357-361
    Beschreibung: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Mt. Etna ; seismic network ; hypocenter ; forerunner ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2017-04-04
    Beschreibung: New Sr–Nd–Pb isotopic ratios and trace element data for volcanic mafic rocks outcropping along a E–W transect in southern Italy, from Mt. Vulture to Neapolitan volcanoes, are reported. The variation of LILE/HFSE, HFSE/HFSE and radiogenic isotopes along this transect indicates that all of these volcanoes contain both intra-plate and subduction-related signatures, with the former decreasing from Mt. Vulture to Campanian volcanoes. New data are also reported for the Paleocene alkaline rocks from Pietre Nere (Apulia foreland), which show isotopic ratios mostly overlapping the values for Mediterranean intra-plate volcanoes as well as the Eocene–Oligocene alkaline mafic lavas from the northern Adria plate. Pietre Nere provides evidence for an OIB mantle composition of FOZO-type, free of subduction influences, that is present beneath the Adria plate (Africa) before its collision with Europe. After this collision, and formation of the southern Apennines, westward inflow of mantle from the Adria plate to the Campanian area occurred, as a consequence of slab break off. Interaction of subduction components with inflowing Adria mantle generated hybrid sources beneath the Vulture–Campania area, which can explain the compositional features of both Mt. Vulture and the Campanian mafic rocks. Therefore, mafic magmas from these volcanoes represent variable degrees of mixing between different mantle components.
    Beschreibung: Published
    Beschreibung: reserved
    Schlagwort(e): isotopic ; southern Italy ; Mt. Vulture ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 901510 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2017-04-04
    Beschreibung: Northern Apulia is an emerged portion of the Adriatic microplate, representing the foreland–foredeep area of a stretch of the Apennine chain in southern Italy. The interaction between the relatively rigid microplate and the contiguous more deformable domains is responsible for the intense seismicity affecting the chain area. However strong, sometimes even disastrous, earthquakes have also hit northern Apulia on several occasions. The identification of the causative faults of such events is still unclear and different hypotheses have been reported in literature. In order to provide guidelines and constraints in the search for these structures, a comprehensive re-examination and reprocessing of all the available seismic data has been carried out taking into consideration 1) the characteristics of historical events, 2) the accurate relocation of events instrumentally recorded in the last 20 years, 3) the determination of focal mechanisms and of the regional stress tensor. The results obtained bring to light a distinction between the foreland and foredeep areas. In the first region there is evidence of a regional stress combining NWcompression and NE extension, thus structures responsible for major earthquakes should be searched for among strike–slip faults, possibly with a slight transpressive character. These structures could be either approximately N–S oriented sinistral or E–Wdextral faults. In the foredeep region there is a transition toward transtensive mechanisms,with strikes similar to those of the previous zone, or maybe also towardsNWoriented normal faults,more similar to those prevailing in the southern Apennine chain in relation to a dominant NE extension; this appears to be the effect of a reduction of the NW compression, probably due to a decrease in efficiency of stress transmission along the more tectonised border of the Adriatic microplate.
    Beschreibung: Published
    Beschreibung: 9 - 35
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Northern Apulia ; Historical earthquakes ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2022-04-22
    Beschreibung: GPS surveys in the Western Alps, performed in the time span 1993-2003, estimated the current crustal deformation of this area.
    Beschreibung: Published
    Beschreibung: 63-76
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): GPS, western Alps ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...