ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous  (13)
  • Elsevier  (10)
  • Springer-Verlag  (3)
  • Annual Reviews
  • 2020-2024
  • 2005-2009  (13)
  • 2000-2004
  • 1985-1989
  • 1980-1984
  • 1960-1964
  • 2009  (7)
  • 2007  (6)
Collection
Years
  • 2020-2024
  • 2005-2009  (13)
  • 2000-2004
  • 1985-1989
  • 1980-1984
  • +
Year
  • 1
    Publication Date: 2017-04-04
    Description: Despite its impact in understanding oceanic crust formation and eruptive styles of related volcanism, magma dynamics at midocean ridges are poorly known. Here, we propose a new method to assess ascent rates of mid-ocean ridge basalt (MORB) magmas, as well as their pre- and sin-eruptive dynamics. It is based on the idea that a rising magma can reach a variable degree of both CO2 supersaturation in melt and kinetic fractionation among noble gases in vesicles in relation to its ascent rate through the crust. To quantify the relationship, we have used a model of multicomponent bubble growth in MORB melts, developed by extending the single-component model of Proussevitch and Sahagian [A.A. Proussevitch, D.L. Sahagian, Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling, J. Geophys. Res. 103 (1998), 18223–18251.] to CO2–He–Ar gas mixtures. After proper parameterization, we have applied it to published suites of data having the required features (glasses from Pito Seamount and mid-Atlantic ridges). Our results highlight that the investigated MORB magmas display very different ranges of ascent rates: slow rises of popping rock forming-magmas that cross the crust (0.01–0.5 m/s), slightly faster rates of energetic effusions (0.1–1 m/s), up to rates of 1–10 m/s which fall on the edge between lava effusion and Hawaiian activity. Inside a single plumbing system, very dissimilar magma dynamics highlight the large differences in compressive stress of the oceanic crust on a small scale. Constraints on how the systems of ridges work, as well as the characteristics of the magmatic source, can also be obtained. Our model shows how measurements of both the dissolved gas concentration in melt and the volatile composition of vesicles in the same sample are crucial in recognizing the kinetic effects and definitively assessing magma dynamics. An effort should be made to correctly set the studied samples in the sequence of volcanic submarine deposits where they are collected. Enhanced knowledge of a number of physical properties of gas-bearing MOR magmas is also required, mainly noble gas diffusivities, to describe multicomponent bubble growth at a higher confidence level.
    Description: Published
    Description: 138-158
    Description: JCR Journal
    Description: reserved
    Keywords: Bubble growth; ; MORB; ; Noble gas; ; Kinetic fractionation; ; Modeling ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Viscosity of water-bearing float glass (0.03–4.87 wt% H2O) was measured in the temperature range of 573–1523 K and pressure range of 50–500 MPa using a parallel plate viscometer in the high viscosity range and the falling sphere method in the low viscosity range. Melt viscosity depends strongly on temperature and water content, but pressure up to 500 MPa has only minor influence. Consistent with previous studies on aluminosilicate compositions we found that the effect of dissolved water is most pronounced at low water content, but it is still noticeable at high water content. A new model for the calculation of the viscosities as a function of temperature and water content is proposed which describes the experimental data with a standard deviation of 0.22 log units. The depression of the glass tran- sition temperature Tg by dissolved water agrees reasonably well with the prediction by the model of Deubener [J. Deubener, R. Mu¨ ller, H. Behrens, G. Heide, J. Non-Cryst. Solids 330 (2003) 268]. Using water speciation measured by near-infrared spectroscopy we infer that although the effect of OH groups in reducing Tg is larger than that of H2O molecules, the difference in the contribution of both species is smaller than predicted by Deubener et al. (2003). Compared to alkalis and alkaline earth elements the effect of protons on glass fragility is small, mainly because of the relatively low concentration of OH groups (max. 1.5 wt% water dissolved as OH) in the glasses.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Glass transition ; Pressure effects ; FTIR measurements ; Alkali silicates ; Silicates ; Soda-lime-silica ; Fragility ; Viscosity ; Water in glass ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: This paper presents and discusses the measurement of permeability of Neapolitan Yellow Tuff (NYT) samples obtained in the framework of a study concerning the phenomenon of bradyseism, i.e. the slow vertical movement of soil, in the Campi Flegrei caldera (Campania—Italy). Measurements have been performed under isothermal, non-isothermal and transient non-isothermal conditions using a specifically designed apparatus. Results of measurements of porosity of different samples are also reported. Experimental results in isothermal conditions show that the volume flux through the samples changes linearly with applied pressure. The values of permeability obtained turn out to be independent of the temperature and pressure gradients applied to the samples. This result is consistent with the fact that the permeability is a characteristic of the porous medium, and as such is not affected by temperature and pressure variation, at least in the range examined. The permeability values measured in our laboratories agree quite well with the ones measured in situ by the Agenzia Generale Italiana Petroli (AGIP) during a geothermal exploration of the Campi Flegrei area in 1980. An interesting, still unexplained phenomenon has been detected during transient phases when both pressure and temperature gradients were applied to the samples. The phenomenon consists in an enhancement of volume flux due to heat flux in the transient phase. The extra volume-flux disappears once the steady temperature gradient is reached.
    Description: Published
    Description: 125-136
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei ; hydrothermal systems; ; resurgent calderas ; porous media ; hydraulic permeability ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: This paper focuses on the role that hydrothermal systems may play in caldera unrest. Changes in the fluid chemistry, temperature, and discharge rate of hydrothermal systems are commonly detected at the surface during volcanic unrest, as hydrothermal fluids adjust to changing subsurface conditions. Geochemical monitoring is carried out to observe the evolving system conditions. Circulating fluids can also generate signals that affect geophysical parameters monitored at the surface. Effective hazard evaluation requires a proper understanding of unrest phenomena and correct interpretation of their causes. Physical modeling of fluid circulation allows quantification of the evolution of a hydrothermal system, and hence evaluation of the potential role of hydrothermal fluids during caldera unrest. Modeling results can be compared with monitoring data, and then contribute to the interpretation of the recent caldera evolution. This paper: 1) describes the main features of hydrothermal systems; 2) briefly reviews numerical modeling of heat and fluid flow through porous media; 3) highlight the effects of hydrothermal fluids on unrest processes; and 4) describes some model applications to the Phlegrean Fields caldera. Simultaneous modeling of different independent parameters has proved to be a powerful tool for understanding caldera unrest. The results highlight the importance of comprehensive conceptual models that incorporate all the available geochemical and geophysical information, and they also stress the need for high-quality, multi-parameter monitoring and modeling of volcanic activity.
    Description: Accepted
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: open
    Keywords: hydrothermal activity ; caldera unrest ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Deep-sea exploration is rapidly improving our understanding of volatiles geochemistry in mid-ocean-ridge igneous products. It is also placing greater constraints on degassing processes of the Earth’s mantle, with the result that degassing models based on vapour–melt equilibrium are no longer able to explain the increasing number of data. In fact, such models force to postulate an upper mantle strongly heterogeneous at any scale, and cannot account for the widespread carbon supersaturation of the recovered igneous products. Here we review the global He–Ar–CO2 dataset of fluid inclusions in mid-ocean-ridge glasses using the framework of advanced modelling of multicomponent bubble growth in magmas. We display that non-equilibrium fractionations among He, Ar and CO2, driven by their different diffusivities in silicate melts, are common in most of the natural conditions of magma decompression and their signature strongly depends on pressure of degassing. Due to the comparable Ar and CO2 diffusivity, magma degassing at low pressure fractionates both the He/Ar and He/CO2 ratio by a similar extent, while the slower CO2 diffusion at high pressure causes early kinetic effects on Ar/CO2 ratio and dramatically changes the degassing path. On this ground, the very different geochemical signatures among suites of data coming from different ridge segments mainly depend on the depth of the magma chamber where the melt was stored. Besides, the variations inside a single suite highlight variable ascent speed and cooling rate of the emplaced lava. The large variations in both the He/CO2 and Ar/CO2 ratios at almost constant He/Ar, displayed in glasses coming from the Mid-Atlantic Ridge 24–30 N segment and the Rodriguez Triple Junction, are therefore interpreted as a high-pressure signature. In contrast, the simultaneous increase in both He/CO2 and He/Ar of the East Pacific Rise, Pito Seamount and South-East Indian Ridge data sets suggests the dominance of low-pressure fractionation, implying that the shallow magma chambers are at a lower depth than those of the Mid- Atlantic Ridge 24–30 N and Rodriguez Triple Junction. Our conclusions support the presence of a relationship between spreading rate and depth of high-temperature zones below ridges, and are consistent with the depth of magma chambers as suggested from seismic studies. Non-equilibrium degassing explains the volatile systematics of mid-ocean-ridge basalts by starting from a single mantle-derived magma, dispensing with the supposed need for heterogeneities in abundance ratios of volatiles in the mantle below oceanic ridges.
    Description: Published
    Description: 1747–1763
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: nonequilibrium degassing ; MORB mantle ; geochemical modeling ; fluid inclusions ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: After the 6 month-long effusive event of 2002-2003, a new lava effusion occurred at Stromboli between 27 February and 2 April 2007. Despite the different durations, approximately the same volume of magma was emitted in both eruptions, in the order of 107 m3 . A paroxysmal eruption occurred at the summit craters in both the 2002–2003 and 2007 episodes, during which a significant amount of low porphyritic (LP), volatile- rich magma was erupted. In both cases, the paroxysm did not interrupt the lava emission. Here, we present compositional data, including texture, mineralogy, chemistry and Sr and Nd isotope ratios of bulk-rock, groundmass and separated minerals of lavas erupted in 2007, together with chemistry and Sr and Nd isotope composition of the pumices emitted during the 15 March paroxysm. As a whole, the lavas have the same texture and chemistry that characterize the highly porphyritic (HP) products usually erupted at Stromboli during normal Strombolian activity and effusive events. Compared to the previous HP products, the 2007 lavas show minor but systematic mineralogical and isotopic variations which are consistent with a modest increase of the magma supply rate of the volcano. Compositional variations during the entire duration of the event are very modest. Glass chemistry changes in lavas erupted in the second half of March can be explained by theminormixing between the volatile-rich LPmagma rising through the shallowmagmatic systemduring the 15 March paroxysm and the degassed residing HP magma. A first conclusion of this study is that there is no compositional evidence supporting major changes in the magma dynamics of the volcano accompanying the effusive activity, as also suggested for the 2002–2003 event. The activity of Stromboli is controlled by a steady state feeding system in which refilling, mixing, degassing and crystallization at shallow level continuously operate,withmodest oscillations in themagma supply rate. Switching between normal Strombolian and effusive activity is related to periods of relatively more vigorous refilling of the shallow system, leading to progressive pressure increase in the upper conduits associated with only minor compositional variations in the erupted products.
    Description: Published
    Description: 255–268
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli volcano ; petrological monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Tephra fallout associated with renewal of volcanism at the Campi Flegrei caldera is a serious threat to the Neapolitan area. In order to assess the hazards related with tephra loading, we have considered three different eruption scenarios representative of past activity: a high-magnitude event similar to the 4.1 ka Agnano-Monte Spina eruption, a medium-magnitude event, similar to the ∼3.8 ka Astroni 6 eruption, and a low-magnitude event similar to the Averno 2 eruption. The fallout deposits were reconstructed using the HAZMAP computational model, which is based on a semi-analytical solution of the two-dimensional advection– diffusion–sedimentation equation for volcanic tephra. The input parameters into the model, such as total erupted mass, eruption column height, and bulk grain-size and components distribution, were obtained by best-fitting field data. We carried out tens of thousands simulations using a statistical set of wind profiles, obtained from NOAA reanalysis. Probability maps, relative to the considered scenarios, were constructed for several tephra loads, such as 200, 300 and 400 kg/m2. These provide a hazard assessment for roof collapses due to tephra loading that can be used for risk mitigation plans in the area.
    Description: Published
    Description: 259–273
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Tephra fallout hazard ; Tephra loading ; Campi Flegrei caldera ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Magma flow during explosive volcanic eruptions has been described assuming rigid conduits with simple cylindrical or planar geometries. Here we study the dynamics of explosive volcanic flows to take account of the role of elastic deformation of the conduit influenced by local magmatic pressure. Three cases are investigated: a dyke with elliptical cross-section, a cylindrical conduit and a deep dyke connected to a shallow cylinder. The model CPIUC (Macedonio et al., 2005) was used for simulations and generalized to account for elastic deformations of the conduit cross-section area due to magmatic overpressure. Fragmentation level is typically deeper in a dyke than in a cylinder. For flows in wide dykes pressure at the fragmentation depth can be lower than the surrounding lithostatic pressure by several tens of MPa, indicating that the wall-rocks of the dyke will be unstable, constraining the dyke width and eventually blocking the eruption. On the other hand, when the fragmentation level is shallow the corresponding lithostatic pressure is not large enough to close the dyke and eruptions from wide dykes are possible. The behaviour changes drastically when we assume the conduit is a dyke at depth that evolves to a cylinder near the surface. In this case even very wide dykes can be stable because the fragmentation level moves into the cylindrical region where deformation is negligible.
    Description: Published
    Description: 455–462
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: conduit geometry ; explosive eruption ; elastic effect ; dyke deformation ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Between 1971 and 2001, the Southeast Crater was the most productive of the four summit craters of Mount Etna, with activity that can be compared, on a global scale, to the opening phases of the Pu‘u ‘Ō‘ō-Kūpaianaha eruption of Kīlauea volcano, Hawai‘i. The period of highest eruptive rate was between 1996 and 2001, when near-continuous activity occurred in five phases. These were characterized by a wide range of eruptive styles and intensities from quiet, non-explosive lava emission to brief, violent lava-fountaining episodes. Much of the cone growth occurred during these fountaining episodes, totaling 105 events. Many showed complex dynamics such as different eruptive styles at multiple vents, and resulted in the growth of minor edifices on the flanks of the Southeast Crater cone. Small pyroclastic flows were produced during some of the eruptive episodes, when oblique tephra jets showered the steep flanks of the cone with hot bombs and scoriae. Fluctuations in the eruptive style and eruption rates were controlled by a complex interplay between changes in the conduit geometry (including the growth of a shallow magma reservoir under the Southeast Crater), magma supply rates, and flank instability. During this period, volume calculations were made with the aid of GIS and image analysis of video footage obtained by a monitoring telecamera. Between 1996 and 2001, the bulk volume of the cone increased by ~36×106 m3, giving a total (1971– 2001) volume of ~72×106 m3. At the same time, the cone gained ~105 m in height, reaching an elevation of about 3,300 m. The total DRE volume of the 1996–2001 products was ~90×106m3. This mostly comprised lava flows (72×106 m3) erupted at the summit and onto the flanks of the cone. These values indicate that the productivity of the Southeast Crater increased fourfold during 1996–2001 with respect to the previous 25 years, coinciding with a general increase in the eruptive output rates and eruption intensity at Etna. This phase of intense summit activity has been followed, since the summer of 2001, by a period of increased structural instability of the volcano, marked by a series of important flank eruptions.
    Description: Published
    Description: 149-173
    Description: reserved
    Keywords: Mount Etna ; Lava fountaining ; Microplinian ; Remote video monitoring ; Volume calculations ; Cone growth ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1912898 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Dikes within stratovolcanoes are commonly expected to have radial patterns. However, other patterns may also be found, due to regional stresses, magmatic reservoirs and topographic variations. Here, we investigate dike patterns within volcanic edifices by studying dike and fissure complexes at Somma-Vesuvius and Etna (Italy) using analogue models. At the surface, the dikes and fissures show a radial configuration. At depths of tens to several hundreds of metres, in areas exposed by erosion, tangential and oblique dikes are also present. Analogue models indicate that dikes approaching the flanks of cones, regardless of their initial orientation, reorient to become radial (parallel to the maximum gravitational stress). This re-orientation is a significant process in shallow magma migration and may also control the emplacement of dikefed fissures reaching the lower slopes of the volcano.
    Description: This work was partly financed with DPC-INGV LAVA Project.
    Description: Published
    Description: 219-223
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Dike propagation ; Central volcanic edifices ; Stress ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: Eruptions are fed by dikes; therefore, better knowledge of dike propagation is necessary to improve our understanding of how magma is transferred and extruded at volcanoes. This study presents an overview of dike patterns and the factors controlling dike propagation within volcanic edifices. Largely based on published data, three main types of dikes (regional, circumferential and radial) are illustrated and discussed. Dike pattern data from 25 volcanic edifices in different settings are compared to derive semi-quantitative relationships between the topography (relief, shape, height, and presence of sector collapses) of the volcano, tectonic setting (presence of a regional stress field), and mean composition (SiO2 content). The overview demonstrates how dike propagation in a volcano is not a random process; rather, it depends from the following factors (listed in order of importance): the presence of relief, the shape of the edifice and regional tectonic control. We find that taller volcanoes develop longer radial dikes, whose (mainly lateral) propagation is independent of the composition of magma or the aspect ratio of the edifice. Future research, starting from these preliminary evaluations, should be devoted to identifying dike propagation paths and likely locations of vent formation at specific volcanoes, to better aid hazards assessment.
    Description: Partly fundedwith DPC-INGVfunds (LAVAProject).
    Description: Published
    Description: 67–77
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dikes ; volcanoes ; topography ; tectonic setting ; eruptions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamics of the volcano, marking the passage from a period (March 1993–June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveals a southward motion of the upper southern part of the volcano, driven by a NNW–SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: This work was funded by the Istituto Nazionale di Geofisica e Vulcanologia and by the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 78–86
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: stress release ; dike ; volcano-tectonics ; flank instability ; Mt. Etna ; instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-12-15
    Description: Eruptive scenarios associated with the possible reactivation of maar-forming events in the Quaternary, ultrapotassic Colli Albani Volcanic District (CAVD) provides implications for volcanic hazard assessment in the densely populated area near Rome. Based on detailed stratigraphy, grain size, componentry, ash morphoscopy and petro-chemical analyses of maar eruption products, along with textural analysis of cored juvenile clasts, we attempt to reconstruct the eruptive dynamics of the Prata Porci and Albano maars, as related to pre- and syn-eruptive interactions between trachybasaltic to K-foiditic feeder magmas and carbonate–silicoclastic and subvolcanic country rocks. Magma volumes in the order of 0.5–3.1×108 m3 were erupted during the monogenetic Prata Porci maar activity and the three eruptive cycles of the Albano multiple maar, originating loose to strongly lithified, wet and dry pyroclastic surge deposits, Strombolian scoria fall horizons and lithic-rich explosion breccias. These deposits contain a wide range of accessory and accidental lithic clasts, with significant vertical stratigraphic variations in the lithic types and abundances. The two maar study cases hold a record of repeated transitions between magmatic (i.e, Strombolian fallout) and hydromagmatic (wet and dry pyroclastic surges) activity styles. Evidence of phreatic explosions, a common precursor of explosive volcanic activity, is only found at the base of the Prata Porci eruptive succession. The quantitative evaluation of the proportions of the different eruptive styles in the stratigraphic record of the two maars, based on magma vs. lithic volume estimates, reveals a prevailing magmatic character in terms of erupted magma volumes despite the hydromagmatic footprint. Different degrees of explosive magma–water interaction were apparently controlled by the different hydrogeological and geological–structural settings. In the Prata Porci case, shifts in the depth of magma fragmentation are proposed to have accompanied eruption style changes. In the Albano case, a deeply dissected geothermal aquifer in peri-caldera setting and variable mass eruption rates were the main controlling factors of repeated shifts in the eruptive style. Finally, textural evidence from cored juvenile clasts and analytical modeling of melt–solid heat transfer indicate that the interacting substrate in the Prata Porci case was at low, uniform temperature (~ 100 °C) as compared to the highly variable temperatures (up to 700–800 °C) inferred for the geothermal system beneath Albano.
    Description: Protezione Civile, Italy 2004–2006 Agreement with Istituto Nazionale di Geofisica e Vulcanologia— INGV, project V3_1
    Description: Published
    Description: 189-202
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: maar ; hydromagmatic eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...