ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography, 21 (2006): PA2009, doi:10.1029/2005PA001218.
    Description: The salinity and temperature of the Florida Current are key parameters affecting the transport of heat into the North Atlantic, yet little is known about their variability on centennial time scales. Here we report replicated, high-resolution foraminiferal records of Florida Current surface hydrography for the last millennium from two coring sites, Dry Tortugas and the Great Bahama Bank. The oxygen isotopic composition of Florida Current surface water (δ18Ow) near Dry Tortugas increased 0.4‰ during the course of the Little Ice Age (LIA: ~1200-1850 A. D.), equivalent to a salinity increase of 0.8-1.5 psu. On the Great Bahama Bank, where surface waters are influenced by the North Atlantic subtropical gyre, δ18Ow increased by 0.3‰ during the last 200 years. Although a portion (~0.1‰) of this shift may be an artifact of anthropogenically-driven changes in surface water ΣCO2, the remaining δ18Ow signal implies a 0.4 to 1 psu increase in salinity after 200 yr BP. The simplest explanation of the δ18Ow data is southward migration of the Atlantic Hadley circulation during the LIA. Scaling of the δ18Ow records to salinity using the modern low-latitude δ18Ow-S slope produces an unrealistic reversal in the salinity gradient between the two sites. Only if δ18Ow is scaled to salinity using a high-latitude δ18Ow-S slope can the records be reconciled. Changes in atmospheric 14C paralleled shifts in Dry Tortugas δ18Ow, suggesting that variable solar irradiance paced centennialscale ITCZ migration and changes in Florida Current salinity during the last millennium.
    Description: This work was supported by NSF grant OCE-0096469.
    Keywords: Gulf Stream ; Salinity ; Little Ice Age
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 21 (2006): PA3010, doi:10.1029/2005PA001257.
    Description: Ocean circulation and global climate are strongly influenced by seawater density, which is itself controlled by salinity and temperature. Although adequate instrumental sea-surface temperature (SST) records exist for most of the surface oceans over the past 100-150 years, records of salinity really only exist for the last 40-50 years. Here we show that longer proxy records from corals (Siderastrea radians) in the eastern tropical North Atlantic are dominated by multi-decadal variations in salinity which are correlated with the relationship between SST and the North Atlantic Oscillation (NAO) over the course of the 20th century. The data reveal an increase in eastern tropical North Atlantic salinity of +0.5 psu between about 1950-1990. Rather than a monotonic secular increase, as indicated by some instrumental records, the pre-instrumental coral proxy records presented here suggest that salinity in the tropical North Atlantic is periodic on a decadal to multi-decadal scale.
    Keywords: Salinity ; Tropical North Atlantic ; North Atlantic Oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...