ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (65)
  • Protein Structure, Tertiary  (65)
  • 2005-2009  (65)
  • 1995-1999
  • 2006  (65)
Collection
  • Journals
  • Articles  (65)
Years
  • 2005-2009  (65)
  • 1995-1999
Year
  • 1
    Publication Date: 2006-12-23
    Description: Synonymous single-nucleotide polymorphisms (SNPs) do not produce altered coding sequences, and therefore they are not expected to change the function of the protein in which they occur. We report that a synonymous SNP in the Multidrug Resistance 1 (MDR1) gene, part of a haplotype previously linked to altered function of the MDR1 gene product P-glycoprotein (P-gp), nonetheless results in P-gp with altered drug and inhibitor interactions. Similar mRNA and protein levels, but altered conformations, were found for wild-type and polymorphic P-gp. We hypothesize that the presence of a rare codon, marked by the synonymous polymorphism, affects the timing of cotranslational folding and insertion of P-gp into the membrane, thereby altering the structure of substrate and inhibitor interaction sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimchi-Sarfaty, Chava -- Oh, Jung Mi -- Kim, In-Wha -- Sauna, Zuben E -- Calcagno, Anna Maria -- Ambudkar, Suresh V -- Gottesman, Michael M -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):525-8. Epub 2006 Dec 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA. kimchi@cber.fda.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185560" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/metabolism ; Cercopithecus aethiops ; Codon ; Cyclosporine/pharmacology ; *Genes, MDR ; Haplotypes ; HeLa Cells ; Humans ; Mutagenesis, Site-Directed ; P-Glycoprotein/antagonists & inhibitors/*chemistry/genetics/*metabolism ; *Polymorphism, Single Nucleotide ; Protein Biosynthesis ; Protein Conformation ; *Protein Folding ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Rhodamine 123/metabolism/pharmacology ; Sirolimus/pharmacology ; Substrate Specificity ; Transfection ; Verapamil/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-12-23
    Description: Iron regulatory protein 1 (IRP1) binds iron-responsive elements (IREs) in messenger RNAs (mRNAs), to repress translation or degradation, or binds an iron-sulfur cluster, to become a cytosolic aconitase enzyme. The 2.8 angstrom resolution crystal structure of the IRP1:ferritin H IRE complex shows an open protein conformation compared with that of cytosolic aconitase. The extended, L-shaped IRP1 molecule embraces the IRE stem-loop through interactions at two sites separated by approximately 30 angstroms, each involving about a dozen protein:RNA bonds. Extensive conformational changes related to binding the IRE or an iron-sulfur cluster explain the alternate functions of IRP1 as an mRNA regulator or enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walden, William E -- Selezneva, Anna I -- Dupuy, Jerome -- Volbeda, Anne -- Fontecilla-Camps, Juan C -- Theil, Elizabeth C -- Volz, Karl -- DK20251/DK/NIDDK NIH HHS/ -- DK47281/DK/NIDDK NIH HHS/ -- GM47522/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1903-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612-7344, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185597" target="_blank"〉PubMed〈/a〉
    Keywords: Apoferritins/*genetics ; Binding Sites ; Crystallography, X-Ray ; Hydrogen Bonding ; Iron/metabolism ; Iron Regulatory Protein 1/*chemistry/*metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA, Messenger/chemistry/genetics/metabolism ; *Regulatory Sequences, Ribonucleic Acid ; *Response Elements ; Sulfur/metabolism ; Untranslated Regions/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rouault, Tracey A -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1886-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA. trou@helix.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185590" target="_blank"〉PubMed〈/a〉
    Keywords: Apoferritins/*genetics ; Apoproteins/chemistry/metabolism ; Crystallography, X-Ray ; Evolution, Molecular ; Iron/metabolism ; Iron Regulatory Protein 1/*chemistry/*metabolism ; Ligands ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Messenger/chemistry/genetics/metabolism ; *Regulatory Sequences, Ribonucleic Acid ; *Response Elements ; Sulfur/metabolism ; Untranslated Regions/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-12-23
    Description: Plant immune responses are triggered by pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs) or by resistance (R) proteins recognizing isolate-specific pathogen effectors. We show that in barley, intracellular mildew A (MLA) R proteins function in the nucleus to confer resistance against the powdery mildew fungus. Recognition of the fungal avirulence A10 effector by MLA10 induces nuclear associations between receptor and WRKY transcription factors. The identified WRKY proteins act as repressors of PAMP-triggered basal defense. MLA appears to interfere with the WRKY repressor function, thereby de-repressing PAMP-triggered basal defense. Our findings reveal a mechanism by which these polymorphic immune receptors integrate distinct pathogen signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Qian-Hua -- Saijo, Yusuke -- Mauch, Stefan -- Biskup, Christoph -- Bieri, Stephane -- Keller, Beat -- Seki, Hikaru -- Ulker, Bekir -- Somssich, Imre E -- Schulze-Lefert, Paul -- New York, N.Y. -- Science. 2007 Feb 23;315(5815):1098-103. Epub 2006 Dec 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Microbe Interactions, Max-Planck-Institut fur Zuchtungsforschung, Carl-von-Linne-Weg 10, D-50829 Koln, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185563" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*immunology/metabolism/microbiology ; Arabidopsis Proteins/genetics/metabolism ; Ascomycota/growth & development/*immunology ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Fungal Proteins/metabolism ; Hordeum/genetics/*immunology/metabolism/microbiology ; Immunity, Innate ; Molecular Sequence Data ; Mutation ; Plant Diseases/*immunology/microbiology ; Plant Proteins/chemistry/genetics/*metabolism ; Plants, Genetically Modified ; Protein Structure, Tertiary ; Receptors, Immunologic/chemistry/genetics/*metabolism ; Receptors, Pattern Recognition/metabolism ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/genetics/*metabolism ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-12-13
    Description: The crystal structure of a putative metal-chelate-type adenosine triphosphate (ATP)-binding cassette (ABC) transporter encoded by genes HI1470 and HI1471 of Haemophilus influenzae has been solved at 2.4 angstrom resolution. The permeation pathway exhibits an inward-facing conformation, in contrast to the outward-facing state previously observed for the homologous vitamin B12 importer BtuCD. Although the structures of both HI1470/1 and BtuCD have been solved in nucleotide-free states, the pairs of ABC subunits in these two structures differ by a translational shift in the plane of the membrane that coincides with a repositioning of the membrane-spanning subunits. The differences observed between these ABC transporters involve relatively modest rearrangements and may serve as structural models for inward- and outward-facing conformations relevant to the alternating access mechanism of substrate translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pinkett, H W -- Lee, A T -- Lum, P -- Locher, K P -- Rees, D C -- GM45162/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):373-7. Epub 2006 Dec 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, MC 114-96, California Institute of Technology (Caltech), Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17158291" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry ; Bacterial Proteins/*chemistry ; Catalytic Domain ; Crystallography, X-Ray ; Dimerization ; Haemophilus influenzae/*chemistry ; Metals/metabolism ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-02
    Description: Members of the Notch family of receptors act as membrane-tethered transcription factors that are tightly associated with binary cell fate decisions. Notch signaling acts as a molecular gate that allows cells to adopt or forfeit a particular fate. Interaction of Notch with ligands triggers a sequence of proteolytic cleavages that release the intracellular domain to the nucleus; this mechanism is a target of therapies for leukemias associated with Notch activation. Although the molecular mechanism of Notch activation is well characterized, further analysis in an appropriate cellular context will provide new insight into Notch signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ehebauer, Matthias -- Hayward, Penelope -- Arias, Alfonso Martinez -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2006 Dec 1;314(5804):1414-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17138893" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; *Cell Lineage ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Humans ; Ligands ; Models, Biological ; Neoplasms/metabolism/pathology ; Protein Structure, Tertiary ; Receptors, Notch/chemistry/*metabolism ; *Signal Transduction ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-11-25
    Description: Clostridium novyi-NT is an anaerobic bacterium that can infect hypoxic regions within experimental tumors. Because C. novyi-NT lyses red blood cells, we hypothesized that its membrane-disrupting properties could be exploited to enhance the release of liposome-encapsulated drugs within tumors. Here, we show that treatment of mice bearing large, established tumors with C. novyi-NT plus a single dose of liposomal doxorubicin often led to eradication of the tumors. The bacterial factor responsible for the enhanced drug release was identified as a previously unrecognized protein termed liposomase. This protein could potentially be incorporated into diverse experimental approaches for the specific delivery of chemotherapeutic agents to tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheong, Ian -- Huang, Xin -- Bettegowda, Chetan -- Diaz, Luis A Jr -- Kinzler, Kenneth W -- Zhou, Shibin -- Vogelstein, Bert -- CA062924/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1308-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and the Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124324" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antineoplastic Agents/*administration & dosage/pharmacokinetics/therapeutic use ; Bacterial Proteins/chemistry/genetics/*metabolism ; Base Sequence ; Camptothecin/administration & dosage/analogs & ; derivatives/pharmacokinetics/therapeutic use ; Cell Line, Tumor ; Cloning, Molecular ; Clostridium/*chemistry/genetics ; Colorectal Neoplasms/*drug therapy ; Doxorubicin/*administration & dosage/pharmacokinetics/therapeutic use ; Drug Carriers ; Humans ; Lipase/chemistry/genetics/*metabolism ; Lipid Bilayers/chemistry ; Liposomes/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Neoplasm Transplantation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-11-25
    Description: Enhancing the nutritional value of food crops is a means of improving human nutrition and health. We report here the positional cloning of Gpc-B1, a wheat quantitative trait locus associated with increased grain protein, zinc, and iron content. The ancestral wild wheat allele encodes a NAC transcription factor (NAM-B1) that accelerates senescence and increases nutrient remobilization from leaves to developing grains, whereas modern wheat varieties carry a nonfunctional NAM-B1 allele. Reduction in RNA levels of the multiple NAM homologs by RNA interference delayed senescence by more than 3 weeks and reduced wheat grain protein, zinc, and iron content by more than 30%.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737439/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737439/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uauy, Cristobal -- Distelfeld, Assaf -- Fahima, Tzion -- Blechl, Ann -- Dubcovsky, Jorge -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1298-301.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124321" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; Frameshift Mutation ; *Genes, Plant ; Iron/*metabolism ; Molecular Sequence Data ; Plant Leaves/chemistry ; Plant Proteins/*metabolism ; Plants, Genetically Modified ; Protein Structure, Tertiary ; Quantitative Trait Loci ; RNA Interference ; RNA, Plant/genetics/metabolism ; Transcription Factors/chemistry/*genetics/physiology ; Triticum/chemistry/*genetics/*metabolism/physiology ; Zinc/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-11-11
    Description: The molecular mechanisms controlling human hair growth and scalp hair loss are poorly understood. By screening about 350,000 individuals in two populations from the Volga-Ural region of Russia, we identified a gene mutation in families who show an inherited form of hair loss and a hair growth defect. Affected individuals were homozygous for a deletion in the LIPH gene on chromosome 3q27, caused by short interspersed nuclear element-retrotransposon-mediated recombination. The LIPH gene is expressed in hair follicles and encodes a phospholipase called lipase H (alternatively known as membrane-associated phosphatidic acid-selective phospholipase A1alpha), an enzyme that regulates the production of bioactive lipids. These results suggest that lipase H participates in hair growth and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kazantseva, Anastasiya -- Goltsov, Andrey -- Zinchenko, Rena -- Grigorenko, Anastasia P -- Abrukova, Anna V -- Moliaka, Yuri K -- Kirillov, Alexander G -- Guo, Zhiru -- Lyle, Stephen -- Ginter, Evgeny K -- Rogaev, Evgeny I -- K08-AR02179/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 10;314(5801):982-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA 01604, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17095700" target="_blank"〉PubMed〈/a〉
    Keywords: Alu Elements ; Amino Acid Sequence ; Base Sequence ; Chromosomes, Human, Pair 3/genetics ; Exons ; Female ; Gene Deletion ; Gene Expression ; Genetic Markers ; Hair/*growth & development ; Hair Follicle/enzymology ; Heterozygote ; Homozygote ; Humans ; Hypotrichosis/*genetics ; Lipase/chemistry/*genetics/metabolism ; Lipid Metabolism ; Lod Score ; Male ; Molecular Sequence Data ; Pedigree ; Protein Structure, Tertiary ; Recombination, Genetic ; Retroelements ; Russia ; Tandem Repeat Sequences
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-11-11
    Description: Paleogenomics propels the meaning of genomic studies back through hundreds of millions of years of deep time. Now that the genome of the echinoid Strongylocentrotus purpuratus is sequenced, the operation of its genes can be interpreted in light of the well-understood echinoderm fossil record. Characters that first appear in Early Cambrian forms are still characteristic of echinoderms today. Key genes for one of these characters, the biomineralized tissue stereom, can be identified in the S. purpuratus genome and are likely to be the same genes that were involved with stereom formation in the earliest echinoderms some 520 million years ago.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bottjer, David J -- Davidson, Eric H -- Peterson, Kevin J -- Cameron, R Andrew -- RR-15044/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 10;314(5801):956-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740, USA. dbottjer@usc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17095693" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcification, Physiologic/genetics ; Calcium Carbonate/analysis ; Echinodermata/*genetics/physiology ; *Fossils ; *Genes ; *Genomics ; Lectins, C-Type/chemistry/genetics/physiology ; Phylogeny ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/physiology ; Strongylocentrotus purpuratus/chemistry/classification/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...