ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (2)
  • 2,4-dichlorophenoxyacetic acid (2,4-D)  (1)
  • Chirality  (1)
  • American Physical Society  (1)
  • Springer  (1)
  • American Chemical Society
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • National Academy of Sciences
  • 2015-2019
  • 2005-2009  (2)
  • 1985-1989
  • 2006  (2)
Collection
  • Books
  • Articles  (2)
Publisher
  • American Physical Society  (1)
  • Springer  (1)
  • American Chemical Society
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • National Academy of Sciences
Years
  • 2015-2019
  • 2005-2009  (2)
  • 1985-1989
Year
  • 1
    ISSN: 1572-9729
    Keywords: Delftia acidovorans MC1 ; 2,4-dichlorophenoxyacetic acid (2,4-D) ; 2-(2,4-dichlorophenoxy) propanoic acid (2,4-DP) ; effect of tfdK gene ; simultaneous utilization of 2,4-D and 2,4-DP ; uptake characteristics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain’s degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (μmax) of 0.158 h−1. The half-maximum rate-associated substrate concentration (Ks) was 45 μM. At pH 8.5 μmax was only 0.05 h−1 and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that μmax with dichlorprop was around 0.2 h−1 at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with μmax of 0.147 h−1 and Ks of 267 μM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 μM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)−2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h−1 at pH 6.8 and up to D = 0.2 h−1 at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2006. This article is posted here by permission of American Physical Society for personal use, not for redistribution. The definitive version was published in Physical Review Letters 96 (2006): 018305, doi:10.1103/PhysRevLett.96.018305.
    Description: We study the liquid-crystalline phase behavior of a concentrated suspension of helical flagella isolated from Salmonella typhimurium. Flagella are prepared with different polymorphic states, some of which have a pronounced helical character while others assume a rodlike shape. We show that the static phase behavior and dynamics of chiral helices are very different when compared to simpler achiral hard rods. With increasing concentration, helical flagella undergo an entropy-driven first order phase transition to a liquid-crystalline state having a novel chiral symmetry.
    Description: M. S. and R. O. are supported by NIH Grant No. EB002583.
    Keywords: Entropy ; Molecular biophysics ; Liquid crystal phase transformations ; Symmetry ; Chirality
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 765344 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...