ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (7)
  • 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies  (3)
  • Industrial Chemistry
  • Inorganic Chemistry
  • Seismology
  • AGU  (11)
  • 2005-2009  (11)
  • 1975-1979
  • 1950-1954
  • 2008  (8)
  • 2006  (3)
Collection
Years
  • 2005-2009  (11)
  • 1975-1979
  • 1950-1954
Year
  • 1
    Publication Date: 2021-05-11
    Description: An empirical Green’s function (EGF) technique has been developed to detect the rupture velocity history of a small earthquake. The assumed source model is a circular crack that is characterized by a single and unipolar moment rate function (MRF). The deconvolution is treated as an inverse problem in the time domain, which involves an assumed form of the moment rate function (MRF). The source parameters of the MRF are determined by adopting a global nonlinear inversion scheme. A thorough synthetic study on both synthetic and real seismograms allowed us to evaluate the degree of reliability of the retrieved model parameters. The technique was applied to four small events that occurred in the Umbria-Marche region (Italy) in 1997. To test the hypothesis of a single rupture process, the inversion results were compared with those arising from another EGF technique, which assumes a multiple rupture process. For each event, the best fit model was selected using the corrected Akaike Information Criterion. For all the considered events the most interesting result is that the selected best fit model favors the hypothesis of a single faulting process with a clear variability of the rupture velocity during the process. For the studied events, the maximum rupture speed can even approach the P-wave velocity at the source, as theoretically foreseen in studies of the physics of the rupture and recently observed for high-magnitude earthquakes.
    Description: Published
    Description: B10314
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: EGF technique ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Frictional melt is implied in a variety of processes such as seismic slip, ice skating,and meteorite combustion. A steady state can be reached when melt is continuously produced and extruded from the sliding interface, as shown recently in a number of laboratory rock friction experiments. A thin, low-viscosity, high-temperature melt layer is formed resulting in low shear resistance. A theoretical solution describing the coupling of shear heating, thermal diffusion, and extrusion is obtained, without imposing a priori the melt thickness. The steady state shear traction can be approximated at high slip rates by the theoretical form : tau=sn^[1/4] (A/sqrt[R]) sqrt[ log[2 V/W] / (V/W) ] under a normal stress sn, slip rate V, radius of contact area R (A is a dimensional normalizing factor and W is a characteristic rate). Although the model offers a rather simplified view of a complex process, the predictions are compatible with experimental observations. In particular, we consider laboratory simulations of seismic slip on earthquake faults. A series of highvelocity rotary shear experiments on rocks, performed for sn in the range 1–20 MPa and slip rates in the range 0.5–2 m/s, is confronted to the theoretical model. The behavior is reasonably well reproduced, though the effect of radiation loss taking place in the experiment somewhat alters the data. The scaling of friction with sn, R, and V in the presence of melt suggests that extrapolation of laboratory measures to real Earth is a highly nonlinear, nontrivial exercise.
    Description: Published
    Description: B01308
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: friction ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We discuss the tectonic implications of a new residual magnetic map of the Apennine belt/Adriatic-Apulian foreland obtained by integrating ground and offshore data sets [Chiappini et al., 2000a]. Negative anomalies are documented over the Adriatic-Apulian foreland areas, whereas the external Apennine belt is characterized by a ubiquitous lowamplitude (〈30 nT), long-wavelength positive anomaly. In the central northern Apennines, three 100 km wide more intense (100–200 nT) round-shaped anomalies are superimposed to the long-wavelength feature. Finally, in the Tyrrhenian Sea and margins, high-intensity, short-wavelength positive-negative couplets coincide with magmatic outcrops or bodies at shallow depth. The low-amplitude anomaly pattern over Italy suggests that the magnetic basement beneath the Triassic evaporites is ubiquitously incorporated in the external belt compressive fronts, implying a thick-skinned tectonic style for the external Apennines. The new residual magnetic map resolves the inconsistency between previous aeromagnetic data [AGIP SpA. Italia, 1981], which suggested a lack of basement involvement in the Apennine belt, and recent seismic data, which imaged deep reflectors penetrating the basement. Two magnetic models along NE-SW transects in the northern and southern Apennines suggest consistent structural styles. In the northern Apennines, positive anomalies roughly coincide with the external compressive fronts, although there are local second-order differences between the belt front and the edges of the anomaly. Here the magnetic data show that the basement rises southwestward along the thrust fronts from 6–7 km depth in the Adriatic foreland to 2–3 km depth in the axial belt, where some exploration wells have penetrated basement. Within the belt front, basement exhumation is inferred to occur along high-angle, low-displacement thrust faults inverting preexisting normal faults. In the southern Apennines, a remarkable positive magnetic anomaly is parallel with and tens of kilometers southwest of the belt front. Seismic data and oil wells show that the basement surface cannot be shallower in the belt than in the foreland. Therefore the observed magnetic anomaly is produced by strongly magnetic basement beneath the belt, likely an internal crustal wedge tectonically interposed between the Apulian carbonate sequences and basement.
    Description: Published
    Description: 2290
    Description: JCR Journal
    Description: reserved
    Keywords: Magnetic anomalies ; Potential fields ; Apennines ; Crustal modelling ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-03
    Description: Spherical Cap Harmonic Analysis has been applied to obtain a reference model of geomagnetic secular change for Antarctica valid for the last forty years. In this paper, we use the latest available observatory data to update this model and to compare it with the 8th generation IGRF. In addition, the selected set of total field values used for the generation of the Oersted Initial Field Model have been employed together with observatory data to develop the first complete Antarctic Reference Model (ARM). This model improves the fit to the secular variation deduced from observatory data by about 60% relative to IGRF, and the fit to observatory and satellite field data by 8%. The model allows merging data sets taken at different altitudes and epochs in Antarctica, where significant temporal geomagnetic variations occur.
    Description: Published
    Description: 1192
    Description: JCR Journal
    Description: reserved
    Keywords: Geomagnetic reference fields ; Geomagnetic spatial variations (all harmonics and anomalies) ; Geomagnetic time variations - secular and long term ; 04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional models ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-03
    Description: The Southern Apennines chain is related to the west-dipping subduction of the Apulian lithosphere. The strongest seismic events mostly occurred in correspondence of the chain axis along normal NW–SE striking faults parallel to the chain axis. These structures are related to mantle wedge upwelling beneath the chain. In the foreland, faulting develops along E–W strike-slip to oblique-slip faults related to the roll-back of the foreland. Similarly to other historical events in Southern Apennines, the I0 = XI (MCS intensity scale) 23 July 1930 earthquake occurred between the chain axis and the thrust front without surface faulting. This event produced more than 1400 casualties and extensive damage elongated approximately E-W. The analysis of the historical waveforms provides the chance to study the fault geometry of this ‘‘anomalous’’ event and allow us to clarify its geodynamic significance. Our results indicate that the MS = 6.6 1930 event nucleated at 14.6 ± 3.06 km depth and ruptured a north dipping, N100 E striking plane with an oblique motion. The fault propagated along the fault strike 32 km to the east at about 2 km/s. The eastern fault tip is located in proximity of the Vulture volcano. The 1930 hypocenter, similarly to the 1990 (MW = 5.8) Southern Apennines event, is within the Mesozoic carbonates of the Apulian foredeep and the rupture developed along a ‘‘blind’’ fault. The 1930 fault kinematics significantly differs from that typical of large Southern Apennines earthquakes, which occur in a distinct seismotectonic domain on late Pleistocene to Holocene outcropping faults. These results stress the role played by pre-existing, ‘‘blind’’ faults in the Apennines subduction setting
    Description: Published
    Description: B05303
    Description: 3.2. Tettonica attiva
    Description: 3.10. Sismologia storica e archeosismologia
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: reserved
    Keywords: southern apennines ; historical earthquakes ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We studied 1951-1992 elevation changes recorded by a first order leveling line that intercepts the surface projection of the 26 Sep. 1997, Mw 6.0, Umbria-Marche earthquake causative fault. The line documents 1951-1992 localized subsidence along a 12 km section above the fault. We calculated the expected 1997 coseismic elevation changes along the line using standard dislocation modeling and found that their trend has an amplitude three times larger than the trend of the observed pre-1997 signal but with a similar shape. We suggest that this signal is the result of 10 cm of pre-1992 slip along the northernmost 5 km of the 1997 earthquake fault, where coseismic slip was found to be less than the average estimated for the entire fault. This result implies unusually fast slip along this section of the fault and may suggest slip acceleration in preparation for the impending failure.
    Description: Published
    Description: 1953-1956
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: reserved
    Keywords: pre-seismic slip ; leveling ; 1997 Umbria-Marche earthquake ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We show a set of forward model equations in the Fourier domain for calculating the 3D gravity and magnetic anomalies of a given 3D distribution of density or magnetization. One property of the potential-field equations is that they are given by convolution products, providing a very simple analytic expression in the Fourier domain. Under this assumption, the domain of the density or magnetization parameters is connected by a biunivoc relationship with the data space, and potential-field anomalies can be seen as filtered versions of the corresponding density or magnetization distributions. A very fine spatial discretization can be obtained by using a large number of points within a unique 3D grid, where both the source distributions and field data are defined. The main advantage of this formulation is that it dramatically reduces execution times, providing a very fast forward model tool useful for modeling anomalies at different altitudes. We use this method to evaluate an average magnetization of 8 A/m for the Palinuro Seamount in the Tyrrhenian Sea (Southern Italy), thus performing a joint interpretation of morphological and newly acquired magnetic data.
    Description: In press
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: open
    Keywords: magnetic anomalies ; gravity anomalies ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Under the hypotheses that the high-frequency part of the seismic spectrum is controlled by source duration and by peak slip velocity, we applied a recent coda envelope methodology to obtain stable relative source estimates between selected mainshocks and their aftershocks. We computed stable mainshock/aftershock S-wave spectral ratios and used a simple source model in order to quantify the scaling of the seismic sources of the San Giuliano sequence (Southern Italy). From the analysis of the ratios obtained between the main shock of 10/31/2002, and 11 aftershocks, and of those computed between the other main event of the sequence, of 11/01/2002, and 10 aftershocks, we observe that the scaling relationships: holds, with . Despite the strong discrepancy between the moment magnitude and the high-frequency ground motion excited by the main shocks (ML was much lower than Mw), that would indicate low-stress drop sources, we compute anomalously high stress parameters for both events. By comparison, the same analysis was carried out on seismic data of the Hector Mine seismic sequence (the main event of October 16, 1999, , and six of its aftershocks). We found: , with .
    Description: Published
    Description: L12302
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Source mechanics ; Radiated Energy ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We modeled Pnl phases from several moderate magnitude earthquakes in the eastern Mediterranean to test methods and develop path calibrations for determining source parameters. The study region, which extends from the eastern part of the Hellenic arc to the eastern Anatolian fault, is dominated by moderate earthquakes that can produce significant damage. Our results are useful for analyzing regional seismicity as well as seismic hazard, because very few broadband seismic stations are available in the selected area. For the whole region we have obtained a single velocity model characterized by a 30 km thick crust, low upper mantle velocities and a very thin lid overlaying a distinct low velocity layer. Our preferred model proved quite reliable for determining focal mechanism and seismic moment across the entire range of selected paths. The source depth is also well constrained, especially for moderate earthquakes.
    Description: Published
    Description: N/A or not JCR
    Description: reserved
    Keywords: Body wave propagation ; earthquake parameters ; lithosphere ; upper-mantle ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 690519 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: On October 31, 2002, a moderate size earthquake (Mw = 5.8) occurred in Molise region, southern Italy, causing loss of young human lives in a school collapse and destructions in several villages. The day after, a slightly smaller earthquake happened a few kilometers westward from the first one, without making strong damage. We use a complete set of seismological data (global, regional and local, including both body and surface waves) to better understand the source process of these two events. We show that the two earthquakes are similar, in terms of hypocentral depth, focal mechanism, and source kinematics. Moreover, the imaged slip zones are almost contiguous which makes the time delay between the two shocks (29 hours) an open question. The identified updip rupture propagation has amplified the radiation usually created by such Mw = 5.8 earthquakes at 15–20 km depth. We model a maximum acceleration zone in agreement with location of damaged villages.
    Description: Published
    Description: reserved
    Keywords: source kinematics ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 252911 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: A correlation has been recently found between large earthquakes and the succeeding largest 9 explosive eruptions of the last century, which has been interpreted as a product of co- and post-seismic stress diffusion. Here, we check the statistical significance of the proposed coupling by using a larger dataset, and investigate the reliability of the causality hypothesis. We find that the volcanoes with VEI ≥ 4 eruptions underwent, in the few decades before the volcanic event, higher seismic stress perturbations due to large earthquakes compared to other volcanic areas. The correlation is statistically significant and it is not explained by a spatio-temporal clustering of eruptions and earthquakes due to tectonic pulses. This implies that the large earthquakes indeed triggered the eruptions.
    Description: Gruppo Nazionale di Vulcanologia and e-Ruption projects
    Description: Published
    Description: reserved
    Keywords: Volcanology ; Eruption mechanisms ; Seismology ; Volcano seismology ; Tectonophysics ; Stresses - general ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1019925 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...