ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (220)
  • Models, Biological  (123)
  • Protein Conformation  (106)
  • 2020-2022
  • 2015-2019
  • 2005-2009  (220)
  • 1990-1994
  • 1975-1979
  • 2007  (103)
  • 2006  (117)
  • Biology  (220)
  • Law
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
  • Electrical Engineering, Measurement and Control Technology
Collection
  • Journals
  • Articles  (220)
Keywords
Years
  • 2020-2022
  • 2015-2019
  • 2005-2009  (220)
  • 1990-1994
  • 1975-1979
Year
Topic
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-03-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Craik, David J -- New York, N.Y. -- Science. 2006 Mar 17;311(5767):1563-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia. d.craik@imb.uq.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16543448" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-HIV Agents/chemistry/pharmacology ; Anti-Infective Agents/chemistry/pharmacology ; Bacterial Proteins/biosynthesis/chemistry/pharmacology ; Codon, Terminator ; Cyclization ; Cyclotides/biosynthesis/*chemistry/pharmacology ; Defensins/biosynthesis/chemistry/genetics/pharmacology ; Drug Design ; Humans ; Peptides, Cyclic/biosynthesis/*chemistry ; Plant Proteins/biosynthesis/chemistry/pharmacology ; Protein Biosynthesis ; Protein Conformation ; Protein Denaturation ; Protein Engineering ; Protein Folding ; Protein Precursors/metabolism ; Proteins/*chemistry/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steneck, Robert S -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):480-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Marine Sciences, University of Maine, Darling Marine Center, Walpole, ME 04573, USA. steneck@maine.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439653" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Anthozoa ; Caribbean Region ; Computer Simulation ; Conservation of Natural Resources ; *Ecosystem ; Fishes/growth & development/*physiology ; Larva/physiology ; Models, Biological ; Population Dynamics ; *Seawater ; *Swimming ; Water Movements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-04-15
    Description: Advances in molecular biology, organic chemistry, and materials science have recently created several new classes of fluorescent probes for imaging in cell biology. Here we review the characteristic benefits and limitations of fluorescent probes to study proteins. The focus is on protein detection in live versus fixed cells: determination of protein expression, localization, activity state, and the possibility for combination of fluorescent light microscopy with electron microscopy. Small organic fluorescent dyes, nanocrystals ("quantum dots"), autofluorescent proteins, small genetic encoded tags that can be complexed with fluorochromes, and combinations of these probes are highlighted.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giepmans, Ben N G -- Adams, Stephen R -- Ellisman, Mark H -- Tsien, Roger Y -- GM 72033/GM/NIGMS NIH HHS/ -- NS27177/NS/NINDS NIH HHS/ -- RR04050/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2006 Apr 14;312(5771):217-24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16614209" target="_blank"〉PubMed〈/a〉
    Keywords: Diffusion ; Enzymes/metabolism ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Fluorescent Antibody Technique ; *Fluorescent Dyes/chemistry ; Genetic Techniques ; Immunohistochemistry ; *Luminescent Proteins/chemistry/genetics ; Microscopy, Electron ; *Molecular Probe Techniques ; Protein Conformation ; Protein Transport ; Proteins/*analysis/chemistry/metabolism/*physiology ; *Quantum Dots
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-05-13
    Description: The replication of many viruses is associated with specific intracellular compartments called virus factories or virioplasm. These are thought to provide a physical scaffold to concentrate viral components and thereby increase the efficiency of replication. The formation of virus replication sites often results in rearrangement of cellular membranes and reorganization of the cytoskeleton. Similar rearrangements are seen in cells in response to protein aggregation, where aggresomes and autophagosomes are produced to facilitate protein degradation. Here I review the evidence that some viruses induce aggresomes and autophagosomes to generate sites of replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wileman, Thomas -- New York, N.Y. -- Science. 2006 May 12;312(5775):875-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK. t.wileman@uea.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16690857" target="_blank"〉PubMed〈/a〉
    Keywords: *Autophagy ; Cell Membrane Structures/ultrastructure/virology ; Cell Nucleus/ultrastructure/virology ; Cell Nucleus Structures/ultrastructure/virology ; Cytoplasmic Vesicles/physiology/ultrastructure/*virology ; DNA Viruses/*physiology ; Models, Biological ; Phagosomes/physiology/*virology ; Proteins/metabolism ; RNA Viruses/*physiology ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-10-21
    Description: Dey and Joshi (Reports, 21 April 2006, p. 434) studied replicate laboratory populations of Drosophila and reported that low migration led to asynchrony among subpopulations. We argue that this unexpected outcome may be due to variation in the initial size of the subpopulations and uncontrolled stochasticity in the experiments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ranta, Esa -- Kaitala, Veijo -- New York, N.Y. -- Science. 2006 Oct 20;314(5798):420; author reply 420.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Integrative Ecology Unit, Department of Biological and Environmental Sciences, P.O. Box 65 (Viikinkaari 1), FIN-00014 University of Helsinki, Finland. esa.ranta@helsinki.fi〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17053132" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; Computer Simulation ; Drosophila melanogaster/*physiology ; Models, Biological ; Population Dynamics ; Population Growth ; Stochastic Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-06-10
    Description: Bacterial pathogens frequently use protein secretion to mediate interactions with their hosts. Here we found that a virulence locus (HSI-I) of Pseudomonas aeruginosa encodes a protein secretion apparatus. The apparatus assembled in discrete subcellular locations and exported Hcp1, a hexameric protein that forms rings with a 40 angstrom internal diameter. Regulatory patterns of HSI-I suggested that the apparatus functions during chronic infections. We detected Hcp1 in pulmonary secretions of cystic fibrosis (CF) patients and Hcp1-specific antibodies in their sera. Thus, HSI-I likely contributes to the pathogenesis of P. aeruginosa in CF patients. HSI-I-related loci are widely distributed among bacterial pathogens and may play a general role in mediating host interactions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800167/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800167/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mougous, Joseph D -- Cuff, Marianne E -- Raunser, Stefan -- Shen, Aimee -- Zhou, Min -- Gifford, Casey A -- Goodman, Andrew L -- Joachimiak, Grazyna -- Ordonez, Claudia L -- Lory, Stephen -- Walz, Thomas -- Joachimiak, Andrzej -- Mekalanos, John J -- AI21451/AI/NIAID NIH HHS/ -- AI26289/AI/NIAID NIH HHS/ -- GM074942/GM/NIGMS NIH HHS/ -- GM62414/GM/NIGMS NIH HHS/ -- P50 GM062414/GM/NIGMS NIH HHS/ -- P50 GM062414-02/GM/NIGMS NIH HHS/ -- U54 GM074942/GM/NIGMS NIH HHS/ -- U54 GM074942-04S2/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Jun 9;312(5779):1526-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16763151" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/*genetics/physiology/secretion ; Crystallography, X-Ray ; Cystic Fibrosis/complications/microbiology ; Humans ; Models, Molecular ; Protein Conformation ; Pseudomonas Infections/complications/microbiology ; Pseudomonas aeruginosa/*genetics/pathogenicity ; Rats ; Recombinant Fusion Proteins ; Sequence Alignment ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-04-22
    Description: Given the considerable challenges to the rapid development of an effective vaccine against influenza, antiviral agents will play an important role as a first-line defense if a new pandemic occurs. The large-scale use of drugs for chemoprophylaxis and treatment will impose strong selection for the evolution of drug-resistant strains. The ensuing transmission of those strains could substantially limit the effectiveness of the drugs as a first-line defense. Summarizing recent data on the rate at which the treatment of influenza infection generates resistance de novo and on the transmission fitness of resistant virus, we discuss possible implications for the epidemiological spread of drug resistance in the context of an established population dynamic model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Regoes, Roland R -- Bonhoeffer, Sebastian -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):389-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Integrative Biology, ETH Zurich, ETH Zentrum CHN K12.1, Universitatsstrasse 16, CH 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16627735" target="_blank"〉PubMed〈/a〉
    Keywords: Acetamides/pharmacology/therapeutic use ; Amantadine/pharmacology/therapeutic use ; Antiviral Agents/*pharmacology/*therapeutic use ; Computer Simulation ; Disease Outbreaks ; *Drug Resistance, Viral/genetics ; Humans ; Influenza A virus/*drug effects/genetics/pathogenicity ; Influenza, Human/*drug therapy/epidemiology/*prevention & control/virology ; Mathematics ; Models, Biological ; Mutation ; Neuraminidase/antagonists & inhibitors ; Orthomyxoviridae/*drug effects/genetics/pathogenicity ; Oseltamivir ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-09-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brasaemle, Dawn L -- New York, N.Y. -- Science. 2006 Sep 15;313(5793):1581-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Nutritional Sciences, Rutgers, State University of New Jersey, New Brunswick, NJ 08901, USA. brasaemle@aesop.rutgers.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16973864" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Caveolae/metabolism ; Caveolin 1/genetics/*physiology ; Cell Cycle ; Cell Membrane/metabolism ; Cell Proliferation ; Fatty Acids/metabolism ; Glucose/administration & dosage ; Hepatocytes/cytology/*metabolism ; Hydrolysis ; *Lipid Metabolism ; *Liver Regeneration ; Mice ; Models, Biological ; Phospholipids/biosynthesis ; Triglycerides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-03-11
    Description: Nisin is a posttranslationally modified antimicrobial peptide that is widely used as a food preservative. It contains five cyclic thioethers of varying sizes that are installed by a single enzyme, NisC. Reported here are the in vitro reconstitution of the cyclization process and the x-ray crystal structure of the NisC enzyme. The structure reveals similarities in fold and substrate activation with mammalian farnesyl transferases, suggesting that human homologs of NisC posttranslationally modify a cysteine of a protein substrate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Bo -- Yu, John Paul J -- Brunzelle, Joseph S -- Moll, Gert N -- van der Donk, Wilfred A -- Nair, Satish K -- GM58822/GM/NIGMS NIH HHS/ -- R01 GM079038/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Mar 10;311(5766):1464-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16527981" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anti-Bacterial Agents/*biosynthesis/chemistry ; Carbon-Sulfur Lyases/chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Farnesyltranstransferase/chemistry ; Humans ; Lactococcus lactis/*enzymology ; Models, Molecular ; Molecular Sequence Data ; Nisin/*biosynthesis/chemistry ; Protein Conformation ; Protein Processing, Post-Translational ; Sequence Homology, Amino Acid ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-06-17
    Description: Vesicular stomatitis virus is a negative-stranded RNA virus. Its nucleoprotein (N) binds the viral genomic RNA and is involved in multiple functions including transcription, replication, and assembly. We have determined a 2.9 angstrom structure of a complex containing 10 molecules of the N protein and 90 bases of RNA. The RNA is tightly sequestered in a cavity at the interface between two lobes of the N protein. This serves to protect the RNA in the absence of polynucleotide synthesis. For the RNA to be accessed, some conformational change in the N protein should be necessary.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, Todd J -- Zhang, Xin -- Wertz, Gail W -- Luo, Ming -- AI050066/AI/NIAID NIH HHS/ -- R37 AI012464/AI/NIAID NIH HHS/ -- R37 AI012464-28/AI/NIAID NIH HHS/ -- R37 AI012464-29/AI/NIAID NIH HHS/ -- R37 AI012464-30/AI/NIAID NIH HHS/ -- R37 AI012464-31/AI/NIAID NIH HHS/ -- R37AI012464/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2006 Jul 21;313(5785):357-60. Epub 2006 Jun 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, School of Medicine, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16778022" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleocapsid Proteins/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA, Viral/*chemistry/metabolism ; Ribonucleoproteins/*chemistry ; Sequence Alignment ; Vesicular stomatitis Indiana virus/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...